PSI - Issue 23

A. Karolczuk et al. / Procedia Structural Integrity 23 (2019) 69–76 A.Karolczuk, J. Papuga/ Structural Integrity Procedia 00 (2019) 000 – 000

76 8

Findley, W. N. 1959. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. Journal of Engineering for Industry, Nov., 301 – 306. Gagg, C. R., & Lewis, P. R. 2009. In-service fatigue failure of engineered products and structures - Case study review. Engineering Failure Analysis, 16(6), 1775 – 1793. Glinka, G., Shen, G., & Plumtree, A. 1995. A multiaxial fatigue strain energy density parameter related to the critical fracture plane. Fatigue & Fracture of Engineering Materials & Structures, 18(1), 37 – 46. Gołoś, K. M., Debski, D. K., & Debski, M. A. 2014. A stress -based fatigue criterion to assess high-cycle fatigue under in-phase multiaxial loading conditions. Theoretical and Applied Fracture Mechanics, 73, 3 – 8. Karolczuk, A. 2016. Analysis of revised fatigue life calculation algorithm under proportional and non-proportional loading with constant amplitude. International Journal of Fatigue, 88, 111 – 120. Karolczuk, A., Kluger, K., & Łagoda, T. 2016. A correction in the algorithm of fatigue life calculation based on the critical plane approach. International Journal of Fatigue, 83, 174 – 183. Karolczuk, A. , Kurek, M., & Łagoda, T. 2015. Fatigue life of aluminium alloy 6082 T6 under constant and variable amplitude bending with torsion. Journal of Theoretical and Applied Mechanics, 53(2), 421 – 430. Karolczuk, A., & Macha, E. 2005. A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. International Journal of Fracture, 134(3 – 4), 267 – 304. Karolczuk, A., Nadot, Y., & Dragon, A. 2008. Non-local stress gradient approach for multiaxial fatigue of defective material. Computational Materials Science, 44(2), 464 – 475. Karolczuk, A., Skibicki, D., & Pejkowski, Ł. 2019. Evaluation of the Fatemi -Socie damage parameter for the fatigue life calculation with application of the Chaboche plasticity model. Fatigue & Fracture of Engineering Materials & Structures, 42, 197 – 208. Kluger, K., & Łagoda, T. 2018. Modification of the algorithm for calculating fatigue life for the criteria based on the conce pt of the critical plane. Journal of Theoretical and Applied Mechanics, 56(1), 191 – 201. Łagoda, T., Macha, E., & Bȩdkowski, W. 1999. A critical plane approach based on energy concepts: application to biaxial rando m tension compression high-cycle fatigue regime. International Journal of Fatigue, 21(5), 431 – 443. Liu, K. C. 1993. A method based on virtual strain-energy parameters for multiaxial fatigue life prediction. American Society for Testing and Materials, ASTM STP 1, 67 – 84. Lu, C., Melendez, J., & Martínez -Esnaola, J. M. 2017. Fatigue damage prediction in multiaxial loading using a new energy-based parameter. International Journal of Fatigue, 104, 99 – 111. Lu, C., Melendez, J., & Martínez -Esnaola, J. M. 2018a. Modelling multiaxial fatigue with a new combination of critical plane definition and energy-based criterion. International Journal of Fatigue, 108(October 2017), 109 – 115. Lu, C., Melendez, J., & Martínez -Esnaola, J. M. 2018b. Multiaxial fatigue criterion considering the influence of out-of-phase failure and loading condition. International Journal of Fatigue, 114(48), 323 – 330. Matake, T. 1977. An Explanation on Fatigue Limit under Combined Stress. Bulletin of JSME, 20(141), 257 – 263. Matsubara, G., & Nishio, K. 2014. Multiaxial high-cycle fatigue criterion for notches and superficial small holes from considerations of crack initiation and non-propagation. International Journal of Fatigue, 67, 28 – 37. Pan, W. F., Hung, C. Y., & Chen, L. L. 1999. Fatigue life estimation under multiaxial loadings. International Journal of Fatigue, 21(1), 3 – 10. Papadopoulos, I. V., Davoli, P., Gorla, C., Filippini, M., & Bernasconi, A. 1997. A comparative study of multiaxial high-cycle fatigue criteria for metals. International Journal of Fatigue, 19(3), 219 – 235. Papuga, J. 2011. A survey on evaluating the fatigue limit under multiaxial loading. International Journal of Fatigue, 33(2), 153 – 165. Polák, J., & Man, J. 2016. Experimental evidence and physical models of fatigue crack initiation. International Journal of Fa tigue, 91, 294 – 303. Schijve, J. 2003. Fatigue of structures and materials in the 20th century and the state of the art. International Journal of Fatigue, 25(8), 679 – 702. Slámečka, K., Pokluda, J., Kianicová, M., Horníková, J., & Obrtlík, K. 2013. Fatigue life of cast Inconel 713LC with/without protective diffusion coating under bending, torsion and their combination. Engineering Fracture Mechanics, 110, 459 – 467. Smith, K. N., Watson, P., & Topper, T. 1970. Stress-strain function for fatigue of metals. Journal of Materials, 5(4), 767 – 778. Stanfield, G. 1935. Discussion on ”The strength of metals under combined alternating stresses".by H. Gough and H. Pollard. Proc. Institution of Mechanical Engineers 131: p. 93. Stulen, F. B., & Cummings, H. N. 1954. A failure criterion for multiaxial fatigue stresses. Proceedings of the ASTM, 54, 822 – 835. Wang, C. H, & Brown, M. W. 1993. A path-independent parameter for fatigue under proportional and non-proportional loading. Fatigue & Fracture of Engineering Materials & Structures 16(12), 1285-1298.

Made with FlippingBook - Online Brochure Maker