PSI - Issue 23
Jiaming Wang et al. / Procedia Structural Integrity 23 (2019) 167–172 J. Wang et al. / Structural Integrity Procedia 00 (2019) 000–000
172
6
Fig. 5. Crack patterns of fracture-energy e ff ect under compression (a) and tension (b) for whole model and damaged elements
into a dominant crack. The localisation is governed by mortar damage. In compression, the stress-strain behaviour is a ff ected by the ITZ cohesive parameters - increasing ITZ cohesive strength and fracture energy increases concrete strength. The results suggest: ITZ normal cohesive strength close to the mortar tensile strength and cohesive energy of 0.03 N / mm; ratio between ITZ shear and normal cohesive strengths approximately three.
Acknowledgements
Wang acknowledges the support of Manchester X-ray Imaging Facility for using Aviso and Simpleware and IT Services for using Computational Shared Facility (CSF). Jivkov acknowledges gratefully the financial support of EPSRC via grant EP / N026136 / 1.
References
[1] W. A. Tasong, C. J. Lynsdale, J. C. Cripps, Aggregate-cement paste interface: Part I. Influence of aggregate geochemistry, Cem. Concr. Res. 29 (1999) 1019–1025. doi: 10.1016/S0008-8846(99)00086-1 . arXiv:arXiv:1011.1669v3 . [2] J. Xiao, W. Li, D. J. Corr, S. P. Shah, E ff ects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete, Cem. Concr. Res. 52 (2013) 82–99. doi: 10.1016/j.cemconres.2013.05.004 . [3] C. M. Lo´pez, I. Carol, A. Aguado, Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior, Mater. Struct. 41 (2008) 583–599. doi: 10.1617/s11527-007-9314-1 . [4] W. Ren, Z. Yang, R. Sharma, C. Zhang, P. J. Withers, Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete, Eng. Fract. Mech. 133 (2015) 24–39. doi: 10.1016/j.engfracmech.2014.10.016 . [5] X. Wang, M. Zhang, A. P. Jivkov, 3-Computational technology for analysis of 3D meso-structure e ff ects on damage and failure of concrete, Int. J. Solids Struct. 80 (2016) 310–333. doi: 10.1016/j.ijsolstr.2015.11.018 . [6] W. Trawin´ski, J. Tejchman, J. Bobin´ski, A three-dimensional meso-scale modelling of concrete fracture, based on cohesive elements and X-ray µ CT images, Eng. Fract. Mech. 189 (2018) 27–50. doi: 10.1016/j.engfracmech.2017.10.003 . [7] R. Zhou, Y. Lu, A mesoscale interface approach to modelling fractures in concrete for material investigation, Constr. Build. Mater. 165 (2018) 608–620. doi: 10.1016/j.conbuildmat.2018.01.040 . [8] J. Wang, A. P. Jivkov, D. L. Engelberg, Q. Li, Meso-scale modelling of mechanical behaviour and damage evolution in normal strength concrete, Procedia Struct. Integr. 13 (2018) 560–565. doi: 10.1016/j.prostr.2018.12.092 . [9] GB50010, Chinese code for the design of reinforced concrete structures, 2010. [10] W. Trawin´ski, J. Bobin´ski, J. Tejchman, Two-dimensional simulations of concrete fracture at aggregate level with cohesive elements based on X-ray µ CT images, Eng. Fract. Mech. 168 (2016) 204–226. doi: 10.1016/j.engfracmech.2016.09.012 . [11] J. Lee, M. M. Lopez, An Experimental Study on Fracture Energy of Plain Concrete, Int. J. Concr. Struct. Mater. 8 (2014) 129–139. doi: 10.1007/ s40069-014-0068-1 .
Made with FlippingBook - Online Brochure Maker