PSI - Issue 23
Stanislav Žák et al. / Procedia Structural Integrity 23 (2019) 239 – 244
244
Stanislav Žák et al. / Structural Integrity Procedia 00 (2019) 000 – 000
6
References
Bleeck, O., Munz, D., Schaller, W., Yang, Y., 1998. Effect of a graded interlayer on the stress intensity factor of cracks in a joint under thermal loading. Eng. Fract. Mech. 60, 615 – 623. Doi: 10.1016/S0013-7944(98)00044-7 Cook, T.S., Erdogan, F., 1972. Stresses in bonded materials with a crack perpendicular to the interface. Int. J. Eng. Sci. 10, 677 – 697. Doi: 10.1016/0020-7225(72)90063-8 Dassault-Systemes, 2015. Abaqus/CAE 2016 (users manual). Delfin, P., Gunnars, J., Stahle, P., 1995. Effect of elastic mismatch on the growth of a crack initially terminated at an interface in elastic plastic bimaterials. Fatigue Fract. Eng. Mater. Struct. 18, 1201 – 1212. Doi: 10.1111/j.1460-2695.1995.tb00848.x Dolbow, J., Gosz, M., 1996. Effect of out-of-plane properties of a polyimide film on the stress fields in microelectronic structures. Mech. Mater. 23, 311 – 321. Doi: 10.1016/0167-6636(96)00021-X Erdogan, F., 1995. Fracture mechanics of functionally graded materials. Compos. Eng. 5, 753 – 770. Doi: 10.1016/0961-9526(95)00029-M Freund, L.B., Suresh, S., 2003. Thin film materials : stress, defect formation, and surface evolution. Cambridge University P ress, Cambridge, UK Kim, A.S., Suresh, S., Shih, C.F., 1997. Plasticity effects on fracture normal to interfaces with homogeneous and graded compositions. Int. J. Solids Struct. 34, 3415 – 3432. Doi: 10.1016/S0020-7683(96)00225-9 Kolednik, O., Predan, J., Fischer, F.D., 2010. Cracks in inhomogeneous materials: Comprehensive assessment using the configurational forces concept. Eng. Fract. Mech. 77, 3611 – 3624. Doi: 10.1016/j.engfracmech.2010.10.010 Pan, E., Amadei, B., 1999. Boundary element analysis of fracture mechanics in anisotropic bimaterials. Eng. Anal. Bound. Elem. 23, 683 – 691. Doi: 10.1016/S0955-7997(99)00018-1 Pippan, R., Flechsig, K., Riemelmoser, F.O., 2000. Fatigue crack propagation behavior in the vicinity of an interface between materials with different yield stresses. Mater. Sci. Eng. A 283, 225 – 233. Doi: 10.1016/S0921-5093(00)00703-6 Pippan, R., Riemelmoser, F.O., 1998. Fatigue of bimaterials. Investigation of the plastic mismatch in case of cracks perpendicular to the interface. Comput. Mater. Sci. 13, 108 – 116. Doi: 10.1016/s0927-0256(98)00051-2 Rice, J.R., 1988. Elastic Fracture Mechanics Concepts for Interfacial Cracks. J. Appl. Mech. 55, 98. Doi: 10.1115/1.3173668 Romeo, A., Ballarini, R., 1997. A cohesive zone model for cracks terminating at a bimaterial interface. Int. J. Solids Struct . 34, 1307 – 1326. Doi: 10.1016/S0020-7683(96)00144-8 Rousseau, C.-E., Tippur, H.V., 2000. Compositionally graded materials with cracks normal to the elastic gradient. Acta Mater. 48, 4021 – 4033. Doi: 10.1016/S1359-6454(00)00202-0 Shih, C.F., 1991. Cracks on bimaterial interfaces: elasticity and plasticity aspects. Mater. Sci. Eng. A 143, 77 – 90. Doi: 10.1016/0921-5093(91)90727-5 Simha, N.K., Fischer, F.D., Kolednik, O., Chen, C.R., 2003. Inhomogeneity effects on the crack driving force in elastic and elastic-plastic materials. J. Mech. Phys. Solids 51, 209 – 240. Doi: 10.1016/S0022-5096(02)00025-X Sugimura, Y., Lim, P.G., Shih, C.F., Suresh, S., 1995. Fracture normal to a bimaterial interface: Effects of plasticity on crack-tip shielding and amplification. Acta Metall. Mater. 43, 1157 – 1169. Doi: 10.1016/0956-7151(94)00295-S Walters, M.C., Paulino, G.H., Dodds, R.H., 2005. Interaction integral procedures for 3-D curved cracks including surface tractions. Eng. Fract. Mech. 72, 1635 – 1663. Doi: 10.1016/j.engfracmech.2005.01.002 Williams, M.L., 1959. The Stresses Around a Fault or Crack in Dissimilar Media. Bull. Seismol. Soc. Am. 49, 199 – 204. Zak, A.R., Williams, M.L., 1963. Crack Point Stress Singularities at a Bi-Material Interface. J. Appl. Mech. 30, 142. Doi: 10.1115/1.3630064 Zhang, S., Sakane, M., Nagasawa, T., Kobayashi, K., 2011. Mechanical Properties of Copper Thin Films Used in Electronic Devices. Procedia Eng. 10, 1497 – 1502. Doi: 10.1016/J.PROENG.2011.04.250
Made with FlippingBook - Online Brochure Maker