PSI - Issue 22
Z. Marciniak et al. / Procedia Structural Integrity 22 (2019) 393–400 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
399
7
In the case of phase shift change from 0° to 90°, we can found fatigue life increase for round cross-sections specimens and all stress ratios. In the case of stresses amplitude ratios a / a = 0.5, 1, 2 and = 0° and 90° for round sections we can observe fatigue life increase. References Findley W.N., 1959. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. Journal of Engineering for Industry 1, 301-306. Xia Z., Ellyin F., 1998. Multiaxial fatigue of an alumina particle reinforced aluminium alloy. Int. J. Fatigue 20, 51-56. Hutsaylyuk V., Snieżek L., Chausov M., Torzewski J., Pylypenko A., Wachowski M., 2016. Cyclic deformation of aluminium alloy s after the preliminary combined loading. Eng Failure Anal 69, 66-76. Rozumek D., Marciniak Z., 2008. Control system of the fatigue stand for material tests under combined bending with torsion loading and experimental results. Mech Syst Sig Process 22(6),1289 – 96. Gough H.J., Pollard H.V., 1935. The effect of specimen form on the resistance of metals to combined alternating stresses. Institution of Mechanical Engineers 135, 549-573. Nishihara T., Kawamoto M., 1945. The Strength of metals under combined alternating bending and torsion with phase difference. Memoirs of the College of Engineering XI, 85-112. McDiarmid D.L., 1987. Fatigue under out-of-phase bending and torsion. Fatigue Fract. Eng. Mater. Struct. 9, 457-475. Zenner H., Simbürger A., Liu J., 2000. On fatigue limit of ductile metals under complex multiaxial loading. Int. J. Fatigue 22, 137-145. Macha E., 1989. Generalization of fatigue fracture criteria for multiaxial sinusoidal loadings in the range of random loadings. In: Biaxial and Multiaxial Fatigue (Ed. by M. W. Brown and K. J. Miller), Mechanical Engineering Publications, 425-436. Dang Van K., Griveau B., Message O., 1989. On new multiaxial fatigue limit criterion: theory and applicaton. In: Biaxial and Multiaxial Fatigue (Ed. by M. W. Brown and K. J. Miller), Mechanical Engineering Publications, 479-496. Sonsino C.M., Grubisic V., 1987. Multiaxial fatigue behaviour of sintered steels under combined in and out-of-phase bending and torsion. Mat.- wiss. U. Werkstofftech. 18, 55-70. Papadopoulos I.V., 1994. A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals, Int. J. Fatigue 16, 377-384. Carpinteri A., Ronchei C., Spagnoli A., Vantadori S., 2014. Lifetime estimation in the low/medium-cycle regime using the Carpinteri-Spagnoli multiaxial fatigue criterion. Theor. Appl. Fract. Mec. 73, 120-127. Rozumek D., Marciniak Z., 2011. Fatigue crack growth in AlCu4Mg1 under nonproportional bendig with torsion loading. Mater. Science 46, 685-694. Brown M.W., Miller K.J., 1973. A theory for fatigue failure under multiaxial stress – strain condition. Institution of Mechanical Engineers 187, 745-755. Lohr R.D., Ellison E.G., 1980. A simply theory for low cycle multiaxial fatigue. Fatigue Fract. Eng. Mater. Struct. 3, 1-17. Socie D., 1993. Critical plane approaches for multiaxial fatigue damage assessment. In: Advances in Multiaxial Fatigue, ASTM STP 1191, 7-36. Bantachfine S., Azari Z., Pluvinage G, Toth L., 1996. Biaxial low cycle fatigue under non-proportional loading of a magnesium – lithium alloy. Engng. Fract. Mech. 54, 513-522. Liu K.C., 1993. A method based on virtual strain-energy parameters for multiaxial fatigue life prediction. In: Advances in Multiaxial Fatigue, ASTM STP 1191, pp. 67-84. Varvani – Farahani A., 2000. A new energy – critical plane parameter for fatigue life assessment of various metallic materials subjected to in phase and out-of-phase multiaxial fatigue loading conditions. Int. J. Fatigue 22, 295-305. Ellyin F., Gołoś K., Xia Z.J., 1991. In -phase and out-of-phase multiaxial fatigue. Engng. Mater. Technol., ASME 113, 112-118. Chen X., Xu S., Huang D., 1999. A critical plane-strain energy density criterion for multiaxial low-cycle fatigue under non-proportional loading. Fatigue Fract. Eng. Mater. Struct. 22, 679-686. Łagoda T., Macha E, Morel F., Niesłony A., 2001. The energy approach to fatigue life of high strength steel under variable-amplitude tension with torsion in: Proc. of the 6th Int. Conf. on Biaxial/Multiaxial Fatigue and Fracture (Ed. by de M. Freitas), Instituto Superior Técnico, 233 240. Macha E., 2002. A review of energy-based multiaxial fatigue failure criteria. The Archive of Mechanical Engineering XLXIII, 71-101. Rozumek D., Marciniak Z., Lachowicz C.T., 2010. The energy approach in the calculation of fatigue lives under non-proportional bending with torsion. Int. J. Fatigue 32, 1343-1350. Rozumek D., Marciniak Z., 2012. Fatigue properties of notched specimens made of FeP04 steel. Mater. Science 47, 462-469. Lachowicz C.T., 2001. Calculation of the elastic-plastic strain energy density under cyclic and random loading. Int. J. Fatigue 23, 643-652. Gasiak G., Pawliczek R., 2003. Application of an energy model for fatigue life prediction of construction steels under bending, torsion and synchronous bending and torsion. Int. J. Fatigue 25, 1339-1346. Correia J., Raposo P., Muniz-Calvente M., Blasón S., Lesiuk G., De Jesus A., Moreira P., Calçada R., Canteli A., 2017. A generalization of the fatigue Kohout-Vechet model for several fatigue damage parameters. Eng Fract Mech 185, 284-300. Brighenti R., Carpinteri A., Vantadori S., 2012. Fatigue life assessment under a complex multiaxial load history: an approach based on damage mechanics. Fatigue Fract. Eng. Mater. Struct. 35, 141-153.
Made with FlippingBook Digital Publishing Software