PSI - Issue 20
Tatiana Fesenko et al. / Procedia Structural Integrity 20 (2019) 284–293
291
Tatiana Fesenkoet al. / Structural Integrity Procedia 00 (2019) 000–000
8
We get the first approximation for hydrodynamic forces acting on the profiles. Using expressions for the potential (35) – (38) and for forces proportional to the acceleration from (41) we obtain:
k i k i
2 F a V ix
2
V
V
2
cos 2
sin 2
,
(44)
kx
ky
ix
ik
ik
ik
1
2 F a V iy
2
V
V
2
cos 2
sin 2
.
(45)
kx
ky
iy
ik
ik
ik
1
ˆ 2 2 M N N . Elements of this matrix
Let's define connection matrix under acceleration
x y ' can be found from (44), (45). These values have a simple physical implication, for example, i k
'
i k
x x
i k
i k
y x
y y
x y i k ' is the opposite sign force acting on the i- th profile in the OX direction due to the movement of k- th profile in the OY direction with a unit acceleration. Taking into account matrices coefficients, these relations will look like: ' 0, ' 1, y x x y x x x x i i i i i i i i 2 sin 2 , cos 2 , ' 2 2 2 ik ik i k ik ik i k x y x x (46) . cos2 , if 2 sin 2 , ' 2 ' 2 2 i k ik ik i k ik ik i k x y y x i.e., acceleration connection matrix is symmetric. We calculate the first approximation for forces proportional to the oscillating profiles velocities. Let's use expressions (35) – (38), (40), (42). In the expression (42), when calculating the time derivative from i Ф _ , we use the relations: , cos sin 1 , sin cos ik iy ky ik ix kx ik ik ik iy ky ik ix kx ik V V V V dt R d V V V V dt dR (47) then obtain: . cos3 sin 3 8 sin 3 cos3 8 3 1 0 3 1 0 ik ky ik kx ij iy k i ik ky ik kx ij ix V a V V S V a V V S (48) As it is obvious that ki ik and ki ik (fig. 1), so , 1 ,...,N , i,k б б , в в , в ' б ' y y y y x x x x x y x y i k i k i k i k i k i k
k i
'
'
ˆ 2 2 V N N can be defined from (48). Matrix elements
Connections velocity matrix
i k
i k
x x
x y
are the
i k
i k
y x
y y
Made with FlippingBook - Online catalogs