PSI - Issue 20
Tatiana Fesenko et al. / Procedia Structural Integrity 20 (2019) 284–293 Tatiana Fesenko et al. / Structural Integrity Procedia 00 (2019) 000–000
288
5
Flow potential, which can be determined from (18) and (19), satisfies the equation (2) and the boundary impermeability conditions on all circuits N up to small magnitude order ε . For higher-order approximations determination, we use the following recurrence relations:
k i
k
k
_
_ 1 _
j i j i k i ~
, k
1,2,3...,
(20)
j
i
~ ~ , 1 k k
k
1,2,3...,
j
(21)
i
k
k i
_ can be found from boundary problems:
~ and
where
i
_ k i
0,
(22)
k
k
_ 1
_
i
j i
j
(23)
,
r r a
r r a
i
i
i
i
_ k i
0
, i r
when
(24)
~ k i
0,
(25)
k j
k i
~ 1
~
j i
(26)
,
r r a
r r a
i
i
i
i
~ k i
. i r
0
when
(27)
Defined this way potential will satisfy conditions of tightness with accuracy to quantities of smallness order 2 1 k . It is convenient to search flow potential in the form of a decomposition of cylindrical harmonics, which are Laplace equation solutions:
) sin( ) cos( n n и i
n
sin( cos(
)
i
n
r
,
1,2,3...
.
, 1
i
n
n
r
)
i
i
i
Then, we will use the following formulas to convert the potential from one polar coordinate system to another: 0 , , ) ( cos !( 1)! 1)! ( ( 1) cos m ij i ij i m k ij m i k k j j r R i j m m k m k R k m r r k , (28) . , , ) ( sin !( 1)! 1)! ( ( 1) sin 0 m ij i ij i m k ij m i k k j j r R i j m m k m k R k m r r k (29)
Made with FlippingBook - Online catalogs