PSI - Issue 2_B

M. Paarmann et al. / Procedia Structural Integrity 2 (2016) 640–647 M. Paarmann, M. Sander/ Structural Integrity Procedia 00 (2016) 000–000

647

8

experimental and numerical ratchetting curves using Chaboche model. A description of such systematics allows the usage of the Chaboche model to compute reasonable J -integrals, although ratchetting behaviour is not well mapped by this material model. If there are no systematics recognizable, the subroutine describing the Ohno-Wang model will be edited to simulate transient thermal loading, because of the property to map material behaviour better. Acknowledgements The authors thank the Ministry for Economic Affairs and Energy for funding the joint project THERRI (English: Determination of characteristic values for estimating thermal fatigue crack growth in power plants, German: Ermittlung von Kennwerten zur Bewertung thermischen Ermüdungsrisswachstums in Kraftwerken) Further, the authors greatly acknowledge the support by the partners TÜV NORD SysTec GmbH & Co. KG, the chair of Technical Thermodynamics at the University of Rostock, the KNG power plant Rostock and the research institute Jülich. Referances Armstrong, P. J.; Frederick, C. O. (1966): A mathematical representation of the multiaxial bauscinger effect. In: CEGB Report (RD/B/N 731). Bari, Shafiqul; Hassan, Tasnim (2000): Anatomy of coupled constitutive models for ratcheting simulation. In: International Journal of Plasticity (16), S. 381–409. Chaboche, J. L. (1986): Time-independent constitutive theories for cyclic plasticity. In: International Journal of Plasticity (2), S. 149–188. Chaboche, J. L.; Dang-Van, K.; Cordier, G. Chen, Xu; Jiao, Rong; Kim, Kwang Soo (2005): On the Ohno–Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel. In: International Journal of Plasticity (21), S. 161–184. Cornet, C.; Zhao, L. G.; Tong, J. (2009): Ratchetting as adamage parameter for crack growth at elevated temperature. In: Engineering Fracture Mechanics (76), S. 38–53. Döring, Ralph (2006): Zum Deformations- und Schädigungsverhalten metallischer Werkstoffe unter mehrachsig nichtproportionalen zyklischen Beanspruchungen. Lu, Y.; Taheri, F.; Gharghouri, M. (2011): Monotonic and Cyclic Plasticity Response of Magnesium Alloy. Part II. Computational Simulation and Implementation of a Hardening Model. In: Strain- An International Journal for Experimental Mechanics (47), S. e25-e33. Rahman, Syed Mizanur (2006): Finite element analysis and related numerical schemes for ratcheting simulation. Dissertation. North Carolina State University, North Carlolina. Tong, J.; Cornet, C.; Lin, B.; Li, H.-Y.; Bowen, P.; Williams, S.; Hardy, M. (2016): Near-tp strain ratchetting and crack growth at elevated temperature. In: International Journal of Fatigue (82), S. 514–520. Tong, J.; Zhao, L. G.; Lin, B. (2013): Ratchetting strain as a driving force for fatigue crack growth. In: International Journal of Fatigue (46), S. 49–57. Zhao, L. G.; Tong, J. (2008): A viscoplastic studyof crack-tip deformation and crack growth in a nickel-based superalloy at elevated temperature. In: Journal of the Mechanics and Physics of Solids (56), S. 63–78. Zhao, L. G.; Tong, J.; Byrne, J. (2004): The evolution of the stress-strain fields near a fatigue crack tip and plasticity-induced crack closure revisited. In: Fatigue Fract Engng Mater Struct (27), S. 19–29.

Made with FlippingBook Digital Publishing Software