PSI - Issue 2_B

C. Kontermann et al. / Procedia Structural Integrity 2 (2016) 3125–3134 C. Kontermann et al. / Structural Integrity Procedia 00 (2016) 000–000

3134

10

(4) The kink in the energy di ff erence trends allows a definition of a new crack closure criterion which shows no inherent mesh size dependency and leads to same ∆ J values for the loading and the un-loading hysteresis branch. (5) The introduced fracture mechanics simulation and evaluation procedures are in excellent agreement with the experimental results regarding the ECGM notch support. The significance of considering transient PICC under these conditions has been demonstrated. (6) The proposed method has been validated for the Material X12CrMoWVNbN10-1-1. The introduced general approaches are in principle transferable to other materials as well. The transferability as well as an extension of the approach to consider superimposed early creep crack growth are currently under investigation.

Acknowledgements

The authors would like to thank the ’Forschungsvereinigung der Arbeitsgemeinschaft der Eisen und Metall verar beitenden Industrie e.V.’ (AVIF No. A282) and the ’Forschungskuratorium Maschinenbau e.V.’ (FKM No. 6011331) for their financial support and the working group of the German power plant and gas turbine industry for the very fruit ful discussions. Further thanks are due to the DFG in the framework of the Excellence Initiative, Darmstadt Graduate School of Excellence Energy Science and Engineering (GSC 1070).

References

Andersson, H., et al., 2004. Constitutive dependence in finite-element modelling of crack closure during fatigue. Fatigue & Fracture of Engineering Materials & Structures 27, 75 – 87. Antunes, F., Rodrigues, D., 2008. Numerical simulation of plasticity induced crack closure: Identification and discussion of parameters. Engineering Fracture Mechanics 75, 3101 – 3120. Berger, C., Scholz, A., 2005. Deformation and life assessment of high temperature materials under creep fatigue loading. Materialwissenschaft und Werksto ff technik 36, 722 – 730. Berger, C., Scholz, A., Mu¨ ller, F., Schwienheer, M., 2008. Creep fatigue behaviour and crack growth of steels, in: Abe, F., Kern, T.U. (Eds.), Creep-resistant steels, pp. 446 – 471. Brommesson, R., Ekh, M., Ho¨rnqvist, M., 2015. Correlation between crack length and load drop for low-cycle fatigue crack growth in Ti-6242. International Journal of Fatigue 81, 1 – 9. Cochran, K.B., 2009. Numerical Modeling Issues in Finite Element Simulation of Plasticity Induced Crack Closure with an Emphasis on Material Model E ff ects. Dissertation. University of Illinois. Urbana-Champaign. Cochran, K.B., Dodds, R.H., Hjelmstad, K.D., 2011. The role of strain ratcheting and mesh refinement in finite element analyses of plasticity induced crack closure. International Journal of Fatigue 33, 1205 – 1220. Dankert, M., 1999. Ermu¨dungsrisswachstum in Kerben - Ein einheitliches Konzept zur Berechnung von Anriss- und Rissfortschrittslebensdauern. Vero¨ ff entlichung des Instituts fu¨r Stahlbau und Werksto ff mechanik. TU Darmstadt. Donald, J.K., Phillips, E.P., 1999. Analysis of the Second ASTM Round-Robin Program on Opening-Load Measurement Using the Adjusted Compliance Ratio Technique, in: McClung, R.C., Newman, Jr., J.C. (Eds.), Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume, ASTM STP 1343, pp. 79 – 93. Dowling, N.E., Iyyer, N.S., 1987. Fatigue crack growth and closure at high cyclic strains. Materials Science and Engineering 96, 99 – 107. Elber, W., 1970. Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics 2, 37 – 44. Gri ffi th, A.A., 1920. The Phenomena of Rupture and Flow in Solids. Philosophical Transactions, Series A 221, 163 – 198. Irwin, G.R., 1957. Analysis of Stresses and Strains near the End of a Crack Traversing a Plate. Journal of Applied Mechanics 24, 361 – 364. Kontermann, C., Almstedt, H., 2014. Eine Methode zur Berechnung zyklischer, e ff ektiver J -Integrale mittels FEM zur Abscha¨tzung von Stu¨ tzzi ff ern fu¨r den LCF-Bereich, in: 46. Tagung DVM Arbeitskreis Bruchvorga¨nge, pp. 129 – 138. de Matos, P.F.P., Nowell, D., 2008. Numerical simulation of plasticity-induced fatigue crack closure with emphasis on the crack growth scheme: 2D and 3D analyses. Engineering Fracture Mechanics 75, 2087 – 2114. McClung, R.C., Thacker, B.H., Roy, S., 1991. Finite element visualization of fatigue crack closure in plane stress and plane strain. International Journal of Fracture 50, 27 – 49. Park, S.J., et al., 1997. Determination of the Most Appropriate Mesh Size for a 2-D Finite Element Analysis of Fatigue Crack Closure Behaviour. Fatigue & Fracture of Engineering Materials & Structures 20, 533 – 545. Pommier, S., Bompard, P., 2000. Bauschinger e ff ect of alloys and plasticity-induced crack closure: a finite element analysis. Fatigue & Fracture of Engineering Materials & Structures 23, 129 – 139. Rice, J.R., 1986. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics 35, 379 – 386. Vormwald, M., 1989. Anrisslebensdauervorhersage auf der Basis der Schwingbruchmechanik fu¨r kurze Risse. Vero¨ ff entlichung des Instituts fu¨r Stahlbau und Werksto ff mechanik. TH Darmstadt.

Made with FlippingBook Digital Publishing Software