PSI - Issue 2_B

K.-H. Lang et al. / Procedia Structural Integrity 2 (2016) 1133–1142 K.-H.-Lang et al. / Structural Integrity Procedia 00 (2016) 000–000

1141

9

5. Acknowledgements The authors would like to thank the German Research Foundation (DFG) for the financial support. 6. References Gabelli, A., Lai, J., Lund, T., Ryden, K., Strandell, I., Morales-Espejel, G. E., 2012. The fatigue limit of bearing steels – Part II: Characterization for life rating standards. Int J Fat 38, 169-180. Pyttel, B., Schwerdt, D., C. Berger, 2011. Very high cycle fatigue - Is there a fatigue limit?. Int J Fat 33, 49-58. Sonsino, C. M., 2005. Endurance Limit – A Fiction. Konstruktion, 1-6. Furuya, Y., 2011. Notable size effect on very high cycle fatigue properties of high-strength steel. Mat Sci Eng A, 528, 5234-5240. Yang, Z. G. et al, 2004. The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime. Acta Mater 52, 5235-5241. Akiniwa, Y. et al., 2006. Notch effect on fatigue strength reduction of bearing steel in the very high cycle regime. Int J Fat 28, 1555-1565. Sakai, T, Li, W., Lian, B., Oguma, N., 2011. Review and new analysis on fatigue crack initiation mechanisms of interior inclusion-induced fracture of high strength steels in very high cycle regime. Proc of VHCF-5, Berlin, Germany, 19-26. Bacher – Hoechst, M., Issler, S., 2011. How to deal with Very High Cycle Fatigue (VHCF) effects in practical application. Proc of VHCF-5, Berlin, Germany, 45-50. Oguma, N. et al., 2011. Influence of martensitic quenching on fatigue property of high carbon chromium bearing steel under rotating bending. Proc. of VHCF-5, Berlin, Germany, 95-100. Zhao, A. et al. 2012. Effect of strength level and loading frequency on very-high-cycle fatigue behavior for bearing steel. Int J Fat 38, 46-56. Furuya, Y, Matsuoka, S., 2002. Improvement of Giga-cycle fatigue properties by modified ausforming in 1600 and 2000 MPa-class-alloy steels. Metal Mater Trans A – Phys Metall Mater Sci 33, 3421-3431. Abe, T et al., 2004. Giga-cycle fatigue properties of 1800 MPa class spring steel. Fat Fract Eng Mater Struct 27, 159-167. Bathias et al., 2001. How and why the fatigue S-N curve does not approach a horizontal asymptote. In J Fat 23, 143-151. Li, Y.-D., Zhang, L.-L., Fei, Y.-H., Liu, X.Y., Li, M.-X., 2016. On the formation mechanisms of fine granular area (FGA) on the fracture surface for high strength steels in the VHCF-regime. Int J Fat 82, 402-410. Sonsino, C.M., 2007. Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safty. Int J Fat 29, 2246-2258. McEvily, A. J. et al., 2008. On the mechanism of very high cycle fatigue in Ti-6Al-4V. Scrip Mater 59, 1207-1209. Marines, I, Bin, X., Bathias, C., 2003. An understanding of very high cycle regime. Int J Fat 25, 1101-1107. Murakami, Y., 2002. Metal fatigue - Effects of small defects and non-metallic inclusions, Elsevier Science, UK. Wang, Q. Y. et al, 2002. Effect of inclusion on subsurface crack initiation and Giga-cycle fatigue strength. Int J Fat 24, 1269-1274 Ochi, Y., Masaki, K., Matsumara, T., Sekino, T., 2001. Effect of shot peening treatment on high cycle fatigue property of ductile cast iron. Int J Fat 23, 441-448. Masaki, K., Ochi, Y., Matsamura, T, 2004. Initiation and propagation of fatigue cracks in hard-shot peened Type 316L steel in high cycle fatigue. Fat Fract Eng Mater Struct 27, 1137-1145. Shiiozawa, K., Lu, L., 2002. Very high cycle fatigue behavior of shot-peened high-carbon-chromium-bearing steel. Fat Fract Eng Mater Struct 25, 813-822. Sohar, C.R. et al., 2008. Influence of surface residual stresses on Giga-cycle fatigue response of high chromium cold work steel. Mat Werk 39, 248-257. Grad, P., Spriesterbach, D., Kerscher, E., 2014. Influence of the inclusion type on the threshold value of failure in the VHCF-regime of high strength steels. A Mater Research 891-892, 339-344. Liedtke, D., 2005. Wärmebehandlung von Stahl – Härten, Anlassen, Vergüten, Bainitisieren. Merkblatt 450, Stahl-Informations-Zentrum, Düsseldorf. Murakami, Y., Kodama, S., Konuma, S., 1989. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high-strength steels. Int J Fat 11, 291-298. German standard DIN 10247: Micrographic examination of the non-metallic inclusion content of steels using standard pictures. Beuth-Verlag, 2007. Murakami, Y., 1994. Inclusion Rating by statistics of extreme Values and Its Application to Fatigue Strength Prediction and Quality Control of Materials. J Research Nat Inst Stand Tech 99. Anderson, C. W., Shi, G., Atkinson, H. V., Sellars, C. M., 2000. The precision of methods using the statistics of extremes for the estimation of the maximum size of inclusions in clean steels. Acta Mater 48, 4235–4246. Li, W., Sakai, T., Wakita, M., Mimura, S., 2013. Influence of microstructure and surface defect on very high cycle fatigue properties of clean spring steel. Int J Fat 60, 48-56. Kumar, A., Christopher, J., Torbet, J., Pollock, T. M., Jones, J. W., 2010. In situ characterization of fatigue damage evolution in cast Al alloy via nonlinear ultrasonic measurements. Acta Mater, 58, 2143–2154.

Made with FlippingBook Digital Publishing Software