PSI - Issue 2_B

Muhammad Waqas Tofique et al. / Procedia Structural Integrity 2 (2016) 1181 – 1190 M.W. Tofique, J. Bergström, C. Burman/ Structural Integrity Procedia 00 (2016) 000–000

1190 10

4. The threshold value of stress intensity range at the border of FGA was lower than for CGR, approximately 2-4 MPa √ m and 3-7 MPa √ m, respectively.

Acknowledgements

The support of Uddeholms AB, Böhler Uddeholm, Outokumpu Stainless, Sandvik Materials Technology and GKN Aerospace is gratefully acknowledged. References Chai, G., Zhou, N., Ciurea, S., Andersson, M., Peng, R. L., 2012, Local plasticity exhaustion in a very high cycle fatigue regime, Scripta Materialia 66, 769 – 772. Grad, P., Reuscher, B., Brodyanski, A., Kopnarski, M., Kerscher, E., 2012, Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels, Scripta Materialia, 838 – 841. Hong, Y., Liu, X., Lei, Z., Sun, C., The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high strength steels, International Journal of Fatigue, In press. Istomin, K., Dönges, B., Schell, N., Christ, H.-J., Pietsch, U., 2014, Analysis of VHCF damage in a duplex stainless steel using hard X-ray diffraction techniques, International Journal of Fatigue 66, 177 – 182. Kazymyrovych, V., Bergström, Burman, C., 2010, The significance of crack initiation in very high cycle fatigue of steels, Steel Research International 81, 308 – 314. Krupp, U., Knobbe, H., Christ, H.-J., Köster, P., Fritzen, C.-P., 2010, The significance of microstructural barriers during fatigue of a duplex steel in the high- and very-high-cycle-fatigue (HCF/VHCF) regime, International Journal of Fatigue 32, 914 – 920. Krupp, U., Giertler, A., Söker, M., Fu, H., Dönges, B., Christ, H.-J., Husecken, A., Pietsch, U., Fritzen, C.-P., Ludwig, W., 2015, The behaviour of short fatigue cracks during Very High Cycle (VHCF) Fatigue of duplex stainless steel, Engineering Fracture Mechanics 145, 197 – 209. Kunz, L., Lukas, P., Svoboda, M., 2006, Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper, Materials Science and Engineering A 424, 97 – 104. Marines, I., Bin, X., Bathias, C., 2003, An understanding of very high cycle fatigue of metals, International Journal of Fatigue 25, 1101 – 1107. Marines, I., Dominguez, G., Baudry, G., Vittori, J.-F., Rathery, S., Doucet, J.-P., Bathias, C., 2003, Ultrasonic fatigue tests on bearing steel AISI SAE 52100 at frequency of 20 and 30 kHz, International Journal of Fatigue 25, 1037 – 1046. Mercer, C., Soboyejo, A.B.O., Soboyejo, W.O., 1999, Micromechanisms of fatigue crack growth in a forged Inconel 718 nickel-based superalloy, Materials Science and Engineering A 270, 308-322. Mayer, H., Haydn, W., Schuller, R.,Issler, S., Furtner, B., Bacher-Höchst, M., 2009, Very high cycle fatigue properties of bainitic high carbon chromium steel, International Journal of Fatigue 31, 242 – 249. Murakami, Y., Nomoto, T., Ueda, T., 1999, Factors influencing the superlong fatigue failure in steels, Fatigue and Fracture of Engineering Materials and Structures 22, 581 – 590. Sakai, T., Sato, Y., Ogumo, N., 2002, Characteristic S-N properties of high-carbon-chromium-bearing steel under loading in long-life fatigue, Fatigue and Fracture of Engineering Materials and Structures 8, 765 – 773. Sakai, T., 2009, Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use, Journal of Solid Mechanics and Materials Engineering 3, 425 – 439. Shiozawa, K., Morii, Y., Nishino, S., Lu, L., 2006, Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime, International Journal of Fatigue 28, 1521 – 1532. Shiozawa, K., Hasegawa, T., Kashiwagi, Y., Lu, L., 2009, Very high cycle fatigue properties of bearing steel under axial loading condition, International Journal of Fatigue 31, 880 – 888. Stanzl-Tschegg, S., Mughrabi, H., Schönbauer, B., 2007, Life time and cyclic slip of copper in the VHCF regime, International Journal of Fatigue 29, 2050 – 2059. Stanzl-Tschegg, S., Schönbauer, B., 2010, Mechanisms of strain localization, crack initiation and fracture of polycrystalline copper in the VHCF regime, International Journal of Fatigue 32, 886 – 893. Strubbia, R., Herenu, S., Alvarez-Armas, I., Krupp, U., 2014, Short fatigue cracks nucleation and growth in lean duplex stainless steel LDX 2101, Materials Science & Engineering A 615, 169-174. Weidner, A., Amberger, D., Pyczak, F., Schönbauer, B., Stanzl-Tschegg, S., Mughrabi, H., 2010, Fatigue damage in copper polycrystals subjected to ultrahigh-cycle fatigue below the PSB threshold, International Journal of Fatigue 32, 872 – 878. Wang, Q., Y., Bathias, C., Kawagoishi, N., Chen, Q., 2002, Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength, International Journal of Fatigue 24, 1269 – 1274.

Made with FlippingBook Digital Publishing Software