PSI - Issue 2_B
ScienceDirect Available online at www.sciencedirect.com Av ilable o line at ww.sciencedire t.com ienceDirect Structural Integrity Procedia 00 (2016) 000 – 000 Procedia Struc ural Integrity 2 (2016) 1181–119 Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2016) 000–000
www.elsevier.com/locate/procedia
www.elsevier.com/locate/procedia
XV Portuguese Conference on Fracture, PCF 2016, 10-12 February 2016, Paço de Arcos, Portugal Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine P. Brandão a , V. Infante b , A.M. Deus c * a Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal b IDMEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal c CeFEMA, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal Abstract During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 21st European Conference on Fracture, ECF21, 20-24 June 2016, Catania, Italy Very high cycle fatigue crack initiation mechanisms in different engineering alloys Muhammad Waqas Tofique* a , Jens Bergström a , Christer Burman a a Karlstad University, Department of Physics & Engineering Sci nc s, SE-651 88, Karlstad, Sweden Abstract The fatigue crack initiation mechanisms prevalent in high strength martensitic steel grades, hot rolled plate duplex stainless steels, cold rolled strip duplex stainless steel and a super alloy grade were compared. The fatigue testing of all th grades w s conduct d i the VHCF regime using an ultras nic fatigue testing equipment operating at 20 kHz. Scanning electron microscope (SEM) observations of the fracture surfaces revealed the presence of a microstructure controlled initial growth of short fatigue cracks in all the tested grades. Fracture surfaces of the failed specimens of a high strength martensitic steel grade revealed the typical fine granular area (FGA) within the fish-eye area around the internal inclusions. Fatigue crack initiation in the cold rolled strip duplex stainless steel grade occurred at surface defects left over by the cold rolling process of this grade. However, the presence of FGA rou d th surface crack initiating def ct was observed similar to th internal crack initiation in the high strength martensitic st els. By mapping the FGA size development during VHCF loading, as obtained from fracture surfaces, FGA growth results were obtained. A similar study on hot rolled plate duplex stainless steel grades, 2304 SRG and LDX 2101, revealed the presence of an initial crystallographic growth region (CGR) in which crack growth direction is changed by microstructural barriers such as phase and grain boundaries. The early plastic fatigue damage accumulation occurred predominantly in one phase or at th austenite-ferrite phase boundaries. On the other and, an initial transcrystalline fatigue crack growt was observed in the Ni-based super alloy grade Inconel 718. e Copyright © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the Scientific Committee of ECF21. © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of ECF21. Keywords: High Pressure Turbine Blade; Creep; Finite Element Method; 3D Model; Simulation. Keywords: Very high cycle fatigue; ultrasonic fatigue testing; fatigue crack initiation; Fine granular area; duplex stainless steel; martensitic steel, super all y Inconel 718
* Muhammad Waqas Tofique. Tel.: +46-54-700 1684 E-mail address: muhammad-waqas.tofique@kau.se
* Corresponding author. Tel.: +351 218419991. E-mail address: amd@tecnico.ulisboa.pt 2452-3216 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of ECF21.
2452-3216 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. Copyright © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). Peer review under responsibility of the Scientific Committee of ECF21. 10.1016/j.prostr.2016.06.151
Made with FlippingBook Digital Publishing Software