PSI - Issue 2_B
ScienceDirect Available online at www.sciencedirect.com Av ilable o line at ww.sciencedire t.com cienceDirect Structural Integrity Procedia 00 (2016) 000 – 000 Procedia Struc ural Integrity 2 (2016) 2367–2374 Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2016) 000–000
www.elsevier.com/locate/procedia
www.elsevier.com/locate/procedia
XV Portuguese Conference on Fracture, PCF 2016, 10-12 February 2016, Paço de Arcos, Portugal Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine P. Brandão a , V. Infante b , A.M. Deus c * a Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal b IDMEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal c CeFEMA, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal Abstract During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 21st European Conference on Fracture, ECF21, 20-24 June 2016, Catania, Italy Thermal load-induced notch stress intensity factors derived from averaged strain energy density P. Ferro*, F. Berto, T. Borsato University of Padova, Department of Engineering and Management, Stradella S. Nicola, 3 I-36100 Vicenza, Italy Abstract Under the hypothesis of steady-state heat transfer and plane-strain conditions, the intensity of the stress distributions ahead of sharp V-notch tips can be expressed in terms of thermal notch stress intensity factors (thermal NSIFs) which can be used for fatigue strength assessments of notched components. The calculation of thermal NSIFs requires both an uncoupled thermal-mechanical numerical analysis and a very refined mesh. For these reasons, the numerical simulation becomes considerably expensive and time consuming above all if large 2D or 3D models have to be solved. Refined meshes are not necessary when the aim of the finite element analysis is to determine the mean value of the local strain energy density on a control volume surrounding the points of stress singularity. On the other hand, the NSIFs value can be directly determined by the strain energy density. In this work, the method for rapid calculations of NSIFs based on averaged strain energy density, recently published in literature, is extended to thermal problems. © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of ECF21. Keywords: Thermal Stress; Strain Energy Density; Thermal Notch Stress Intensity Factors; Finite Element Method; Thermal Fatigue 1. Introduction In presence of components with g ometric discontinuities like sharp V-notches, the stress distribution near such regions is singula . Under linear-elasti hypothesis and plain strain or plain stress conditions, the solution of this problem was first obtained by Williams (1952) and later extended to the elastic-plastic regime by Hutchinson (1968), Rice and Rosengreen (1968) (HRR). It was found that the singularity grade of the stress asymptotic distribution P - evie un r Sc F21 y; Thermal Notch Stress Inten ; F ; Thermal Fatigue Copyright © 2016 The Aut ors. Published by Elsevier B.V. This is an op n access article under the CC BY-NC-ND licens (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the Scientific Committee of ECF21. © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. Keywords: High Pressure Turbine Blade; Creep; Finite Element Method; 3D Model; Simulation.
* Corresponding author. Tel.: +39 0444 998769; fax: +39 0444 998888. E-mail address: ferro@gest.unipd.it
* Corresponding author. Tel.: +351 218419991. E-mail address: amd@tecnico.ulisboa.pt 2452-3216 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of ECF21.
2452-3216 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. Copyright © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). Peer review under responsibility of the Scientific Committee of ECF21. 10.1016/j.prostr.2016.06.296
Made with FlippingBook Digital Publishing Software