PSI - Issue 2_B

ScienceDirect Available online at www.sciencedirect.com Av ilable o line at ww.sciencedire t.com Sci ceDirect Structural Integrity Procedia 00 (2016) 000 – 000 Procedia Struc ural Integrity 2 (2016) 2338–2346 Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2016) 000–000

www.elsevier.com/locate/procedia

www.elsevier.com/locate/procedia

XV Portuguese Conference on Fracture, PCF 2016, 10-12 February 2016, Paço de Arcos, Portugal Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine P. Brandão a , V. Infante b , A.M. Deus c * a Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal b IDMEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal c CeFEMA, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal Abstract During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 21st European Conference on Fracture, ECF21, 20-24 June 2016, Catania, Italy Statistical correlation between vibration characteristics, surface temperatures and service life of rolling bearings – artificially contami ated by ope pit coal mine deb is particles Radivoje M Mitrovic a , Zarko Z Miskovic a *, Milos B Djukic a , Gordana M Bakic a a University of Belgrade – Faculty of Mechanical Engineering, Kraljice Marije 16, 11120 Belgrade 35, Serbia Abstract Nowadays, two most often used methods for rolling bearings condition monitoring are thermographic inspection and vibrodiagnostic. However, analysis of the relevant literature has shown that so far there is no established correlation between rolling bearings surface temperatures and measured radial vibration intensities. These variables also strongly depend on rolling bearing’s service life and it’s environmental operating conditions, especially in case of open pit coal mine conveyor idler’s rolling bearings; where high concentration of debris particles (such as surface dust, dirt and excavated coal) is present. Taking into account previously listed fa ts; the main g al f the pres nted r s arch results was to establish statistic lly significant correlation between listed varia les: rolling b arings surface temperatur , r dial vibrati n ntensities, ervice lif a concentration level f debris pa ticles in bearing greas . I ord r to achieve this goal, specific exper mental methodology was developed and implemented. Obtain d results were then processed using standardized statistical software and appropri te correlation was generated and later verified in praxis. At this moment, developed experimental methodology is applied only to open pit coal mine conveyor idler’s rolling bearings, but its principles are universal, so with minor modifications it could be used for prediction of any of listed variables for different kinds of rolling bearings, operating in different environments. Copyright © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the Scientific Committee of ECF21. © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of ECF21. Keywords: Rolling bearings, conveyor idlers, contamination, radial vibration intensity, surface temperature

Keywords: High Pressure Turbine Blade; Creep; Finite Element Method; 3D Model; Simulation.

* Corresponding author. Tel.: +381-64-183-2989; fax: +381-11-337-0337. E-mail address: zmiskovic@mas.bg.ac.rs

* Corresponding author. Tel.: +351 218419991. E-mail address: amd@tecnico.ulisboa.pt 2452-3216 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of ECF21.

2452-3216 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. Copyright © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). Peer review under responsibility of the Scientific Committee of ECF21. 10.1016/j.prostr.2016.06.293

Made with FlippingBook Digital Publishing Software