PSI - Issue 2_B

ScienceDirect Available online at www.sciencedirect.com Av ilable o line at ww.sciencedire t.com ienceDirect Structural Integrity Procedia 00 (2016) 000 – 000 Procedia Struc ural Integrity 2 (2016) 2355–2366 Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2016) 000–000

www.elsevier.com/locate/procedia

www.elsevier.com/locate/procedia

XV Portuguese Conference on Fracture, PCF 2016, 10-12 February 2016, Paço de Arcos, Portugal Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine P. Brandão a , V. Infante b , A.M. Deus c * a Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal b IDMEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal c CeFEMA, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal Abstract During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 21st European Conference on Fracture, ECF21, 20-24 June 2016, Catania, Italy Static and dynamic response of titanium alloy produced by electron beam melting Mirone G. 1 , Barbagallo R. 1 , Corallo D. 1 , D B lla S. 2 1 University of Catania, V.le A. Doria 6, 95125 Catania – Italy 2 MT Ortho Srl, Via fossa lupo sn, 95025 Aci Sant’Antonio (CT) Abstract The suitability of Titanium alloys for many specialized applications requiring excellent performances at both static and dynamic strain rates, benefits of modern manufacturing technologies like the additive manufacturing, oriented toward the obtainment of complicated component shapes. The EBM methodology for the production of Ti6Al4V components is based on the localized melting of alloy powders by way of guided electron beams scanning the powder volume by successive planar trajectories; for this reason, the whole production process may confer a certain degree of anisotropy to the components. The material behavior of the EBM alloy may be orientation-dependent in terms of stress-strain elastoplastic response as well as in terms of damage sensitivity and ductile fracture under given triaxiality histories. The static and dynamic behavior of a sintered Ti6Al4V alloy is investigated here by way of quasistatic tension-torsion tests and dynamic tensile Hopkinson bar (SHTB) tests. The outcome of the latter experiments, compared to similar tests results from the literature concerning Ti alloy obtained by classical metallurgical techniques, gives some indications about how the technological process may affect the final performance of the material and the component. © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of ECF21. Copyright © 2016 The Authors. Published by El evier B.V. This is an open access rti le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the Scientific Committee of ECF21. Keywords: High Pressure Turbine Blade; Creep; Finite Element Method; 3D Model; Simulation. 1. Introduction The Ti6Al4V alloy, known also like F136, is by far the most used titanium alloy. In general, the titanium alloys have an austenitic α-phase stable at high temperatures and a martensitic β-phase stable at lower temperatures. The F136 is a mixed α+β alloy. Adding aluminium tends to stabilize the α-phase, while vanadium stabilizes the β-phase. The Electron Beam Melting (EBM) process developed by Arcam allows for end products with complex structures © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. Keywords: Ti6Al4V, true curve, Strain rate

* Corresponding author. Tel.: +351 218419991. E-mail address: amd@tecnico.ulisboa.pt 2452-3216 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of ECF21.

2452-3216 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. Copyright © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). Peer review under responsibility of the Scientific Committee of ECF21. 10.1016/j.prostr.2016.06.295

Made with FlippingBook Digital Publishing Software