PSI - Issue 2_A
Stepanova Larisa et al. / Procedia Structural Integrity 2 (2016) 1797–1804 Stepanova L.V., Roslyakov P.S., Lomakov P.N. / Structural Integrity Procedia 00 (2016) 000–000
1804
8
Acknowledgements
The authors would like to acknowledge the financial support o f the Russian foundation of basic research, project 16-08-00571-a.
References
Akbardoost, J., Ayatollahi, M.R., 2014. Experimental analysis of mixed mode crack propagation in brittle rocks: The e ff ect of non-singular terms. Engineering Fracture Mechanics 129, 77–89. Akbardoost, J., Rastin, A., 2015. Comprehensive date for ca lculating the higher order terms of crack tip stress field in d isk type specimens under mixed-mode loading. Theoretical and Applied Fracture Mechanics 76, 75–90. Ayatollahi, M.R., Nejati, M., 2010. An over-deterministic method for calculation of coe ffi cients of crack tip asymptotic field from finite element analysis. Fatigue Fracture Engineering Materials Structures 34, 159–176. Ayatollahi, M.R., Mirsayar, M.M., Dehghany, M., 2011. Expe rimental determination of stress field parameters in bi-mat erial notches using photoe lasticity. Materials and Design 32, 49014908. Berto, F., Lazzarin, P., 2013. Multiparametric full-field representations of the in-plane stress fields ahead of cracke d components under mixed mode loading, Intern. J. Fatigue 46, 16–26. Hello, G., Tahar, M.-B., Roelandt, J.-M., 2012. Analytitcal determination of coe ffi cints for a finite crack in an infinite plane medium. Intern. J. Solids and Structures 49, 556–566. Hello, G., Tahar, M.-B., 2014. On the exactness of truncated crack-tip stress expansions. Procedia Materials Science 3, 750–755. Holyns’kyi, I.S., 2013. Influence of errors of determinatio n of stresses near a crack tip on the accuracy of computation of the coe ffi cients of the Williams series under Mode II loading. Materials Science 48(4), 438–443. Hua, W., Li, Y., Dong, S., Li, N., Wang, Q., 2015. T-stress for a centrally cracked Brazilian disk under confining pressure . Engineering Fracture Mechanics 149, 37–44. Lychak, O., Holyns’kyi, I.S., 2016. Evaluation of random er rors in Williams’ series coe ffi cients obtained with digital image correlation. Measure ment Science and Technology 27(3), 035203. Malikova, L., Vesely, V., 2015. The influence of higher order terms of Williams series on a more accurate description of st ress fields around the crack tip. Fatigue Fracture Engineering Materials Structures 38, 81–103. Mirlohi, S.N., Aliha, M.R.M., 2013. Crack growth path prediction for the angled cracked plate using higher order terms of Williams series expan sion. Engineering Solid Mechanics 1, 77–84. Ramesh, K., Gupta, S., Kelkar, A.A., 1997. Evaluation of str ess field parameters in fractre mechanics by photoelasticit y - Revisited. Engineering Fracture Mechanics 56, 25-41. Saravani, M. Azizi, M., 2011. The Investigation of Cracks Parameters on the V-Notch using Photoelasticity Method. Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 5(1), 1-6. Sestakova, L., 2013. Detailed crack-tip stress field descri ption in a specimen subjected to mixed - mode loading. Key Engineering Materials 577-578, 317–320. Sestakova, L., 2014. Using the multi-parameter fracture mechanics for more accurate description of stress / displacement fields. Key Engineering Materials 586, 237–240. Stepanova, L.V., Igonin, S.A., 2014. Perturbation method for solving the nonlinear eigenvalue problem arising from fatigue crack growth problem in a damaged medium. Applied Mathematical Modelling 38(14), 3436–3455. Stepanova, L.V., Igonin, S.A., 2015. Asymptotics of the nea r-crack-tip stress field of a growing fatigue crack in damage d materials: Numerical experiment and analytical solution, Numerical Analysis and Applications 8(2), 168–181. Stepanova, L.V., 2008. Eigenvalues of the antiplane-shear crack tip problem for a power-law material. Journal of Applied Mechanics and Technical Physics 49(1), 142–147. Stepanova, L.V., 2008a. Eigenspectra and orders of stress singularity at a mode I crack tip for a power-law medium. Comptes Rendus – Mecanique 336(1-2), 232–237. Stepanova, L.V., 2009. Eigenvalue analysis for a crack in a power-law material. Computational Mathematics and Mathematical Physics 49(8), 1332–1347. Stepanova, L.V., Fedina, M.Ye. 2008. Self-similar solution of a tensile crack problem in a coupled formulation. Journal of Applied Mathematics and Mechanics 72(3), 360–368. Surendra, K.V.N., Simha, K.R.Y., 2013. Design and analysis of novel compression fracture specimen with constant form factor: Edge cracked semicircular disk (ECSD). Engineering fracture mechanics 102, 235 - 248. Vesely, V., Sobek, J., Tesar, D., Frantik, P., Pail, T., Seit l, S., 2015. Multi-parameter approximation of stress field i n a cracked specimen using purpose-built Java applications. Frattura ed Integrita Strutturale 33, 120-133. Williams, M., 1957. On the stress distribtuion at the base of a stationary crack. ASME. Journal Applied Mechanics 24, 109–114.
Made with FlippingBook. PDF to flipbook with ease