PSI - Issue 2_A
Patrizia Bernardi et al. / Procedia Structural Integrity 2 (2016) 2873–2880 Author name / Structural Integrity Procedia 00 (2016) 000–000
2879
7
A selection of the most interesting comparisons between numerical and experimental results is shown in Figure 3, which reports both the global response of the beam (in terms of total applied load P vs. deflection under the loading point v M , Fig. 3a), and the evolution of some selected local variables for increasing values of the external load.
450
-35
(a)
P/2
(b)
Experimental failure load = 387 kN
HH
f 0
10 mm
338
-26
HH4
HH4
σ c (N/mm 2 )
P (kN)
225
-18
-9
113
Experimental Numerical
Experimental Numerical
v M (mm)
P (kN)
0
0
0
100
200
300
400
0
-3
-5
-8
-10
600
300
HH4 (c)
(d)
P/2
P/2
P/2
P/2
HH4
HH
HH
450
225
REGION 1
REGION 2
Σ w REGION 2
Σ w
Σ w max (1/100mm)
Σ w max (1/100mm)
300
150
150
75
Experimental Numerical
Experimental Numerical
P (kN)
P (kN)
0
0
0
100
200
300
400
0
100
200
300
400
450
160
P/2
(f)
(e)
HH4
P = 70 kN
HH
96
338
P = 207 kN
HH4
P = 344 kN
considered stirrups
32
σ s (N/mm 2 )
y (mm)
225
-32
113
-96
Experimental Numerical
Experimental Numerical
P (kN)
ε ( 0 /
00 )
-160
0
-3.0
-1.5
0.0
1.5
3.0
0
100
200
300
400
Fig. 3. Comparison between numerical and experimental (Leonhardt et al. (1964)) results in terms of: (a) total applied load P vs . deflection under the loading point v M ; (b) stress in concrete struts σ c vs. total applied load P ; sum of crack widths Σ w vs. total applied load P in the (c) central and (d) lateral part of the beam; (e) stress in stirrups σ s vs. total applied load P ; (f) cross-section deformation for predefined values of the applied load.
Made with FlippingBook. PDF to flipbook with ease