PSI - Issue 2_A

Patrizia Bernardi et al. / Procedia Structural Integrity 2 (2016) 2873–2880 Author name / Structural Integrity Procedia 00 (2016) 000–000

2879

7

A selection of the most interesting comparisons between numerical and experimental results is shown in Figure 3, which reports both the global response of the beam (in terms of total applied load P vs. deflection under the loading point v M , Fig. 3a), and the evolution of some selected local variables for increasing values of the external load.

450

-35

(a)

P/2

(b)

Experimental failure load = 387 kN

HH

f 0

10 mm

338

-26

HH4

HH4

σ c (N/mm 2 )

P (kN)

225

-18

-9

113

Experimental Numerical

Experimental Numerical

v M (mm)

P (kN)

0

0

0

100

200

300

400

0

-3

-5

-8

-10

600

300

HH4 (c)

(d)

P/2

P/2

P/2

P/2

HH4

HH

HH

450

225

REGION 1

REGION 2

Σ w REGION 2

Σ w

Σ w max (1/100mm)

Σ w max (1/100mm)

300

150

150

75

Experimental Numerical

Experimental Numerical

P (kN)

P (kN)

0

0

0

100

200

300

400

0

100

200

300

400

450

160

P/2

(f)

(e)

HH4

P = 70 kN

HH

96

338

P = 207 kN

HH4

P = 344 kN

considered stirrups

32

σ s (N/mm 2 )

y (mm)

225

-32

113

-96

Experimental Numerical

Experimental Numerical

P (kN)

ε ( 0 /

00 )

-160

0

-3.0

-1.5

0.0

1.5

3.0

0

100

200

300

400

Fig. 3. Comparison between numerical and experimental (Leonhardt et al. (1964)) results in terms of: (a) total applied load P vs . deflection under the loading point v M ; (b) stress in concrete struts σ c vs. total applied load P ; sum of crack widths Σ w vs. total applied load P in the (c) central and (d) lateral part of the beam; (e) stress in stirrups σ s vs. total applied load P ; (f) cross-section deformation for predefined values of the applied load.

Made with FlippingBook. PDF to flipbook with ease