PSI - Issue 2_A
M. Nourazar et al. / Procedia Structural Integrity 2 (2016) 3423–3431
3426
Author name / StructuralIntegrity Procedia 00 (2016) 000–000
4
0 ∫ ∞
( sg y ξ
)
− −
( G b g y x wz
G b
)
ξ
−
cosh( ) sg
sinh( ) sg ξ
e
ξ χ +
x wz
sg y h
s x
)) , ds
h y − < <
[
cosh( (
)) + −
]cos( (
σ
η
ξ
= −
+
−
zx
2
2
2 g y
2 ) ( − + − x ξ
2 ) ]
sgh
sgh
cosh(
)
sinh(
)
2
π
χ
−
2 [ ( π
η
2
2
0 ∫ ∞
( sg y ξ
)
− −
( gG b x x wz
gG b
)
−
η
cosh( ) sg
sinh( ) sg ξ
e
ξ χ +
x wz
sg y h
)) , s x ds η −
[
sinh( (
)) + −
]sin( (
= −
+
σ
zy
2
2 g y
2 ) ( − + − x ξ
2 ) ]
sgh
sgh
cosh(
)
sinh(
)
2
−
π
χ
2 [ ( π
η
2
2
(11)
h y − < <
ξ
2
where the Cauchy-type singularity at the dislocation location have been separated through a standard asymptotic analysis. All integrals in Eq. (11) decay reasonably fast as s → ∞ .
2. The Integral Equations
The formulation accomplished the previous section can be used to analyze layers containing multiple cracks. Let the substrate weakened by N embedded cracks. The cracks configurations may be expressed in parametric form as { } ( ), ( ), 1, 2,..., 1 1 i i i i x x s y y s i N s = = ∈ − ≤ ≤ (12) The movable orthogonal coordinate system n – s is chosen on the i-th crack such that the origin locates on the crack while the s axis remains tangent to the crack surface. The stress components on the surface of i-th crack in the Cartesian coordinates ( , ) x y become: ( , ) cos sin nz i i zy i zx i x y σ σ ϕ σ ϕ = − (13) where i φ is the angle between x and s axes. A crack is constructed by a continuous distribution of dislocations. Suppose dislocations with unknown density wz b are distributed on the infinitesimal segment 2 2 ( ) ( ) j j x y dt ′ ′ + at the surface of the j th crack where 1 1 t − ≤ ≤ and prime denotes differentiation with respect to the relevant argument. The traction components on the surface of the i th crack at a point with coordinates, ( ( ), ( )) i i x s y s , due to the presence of the above-mentioned distribution of dislocations on all N cracks, we obtain the following integral equations for the dislocation densities:
N
1
∑∫
2
2
j ′
j ′
( ( ), ( )) x s y s
ij wzj K s t b t
( , ) ( ) [ ( )] [ ( )] , x t y t dt +
1 1 , s
i
N
(14)
1, 2,...,
=
− ≤ ≤
=
σ
nz i
i
1
−
j
1
=
( ) wz b t . The kernel in
Equations (14) must be satisfied at every point along the crack and is to be solved for the unknown density
the above equation is
0 ∫ ∞
( j i sg y y −
)
gG sgy
sgy sgh
cosh( cosh(
) )
sinh( sinh(
)
+ −
χ χ
e
y
i
i
K
sg y h
)) s x x ds −
[
{
sinh( (
)) + −
}sin( (
=
ij
j
i
j
2
sgh
)
2
π
2
2
0 ∫ ∞
gG
x x −
(
)
G sgy
sgy sgh
sinh( cosh(
)
cosh( sinh(
)
+
χ
y
i
j
x
i
i
]cos( ) [ θ −
{
+
2
2 ) ( − + −
2
sgh
2
)
)
π
−
π
χ
( g y y
x x
)
2
2
i
j
i
j
Made with FlippingBook. PDF to flipbook with ease