PSI - Issue 19
Ho Sung Kim / Procedia Structural Integrity 19 (2019) 472–481 Author name / Structural Integrity Procedia 00 (2019) 000–000
474
3
� = (� �� ) �� �(���) �� � ��� � �� � ��� − 1� + � or � = |� �� | �� �(���) �� � ��� � �� � ��� − 1� + � . These equations are invertible such that: ��� = �� � �(���)(� � �� � ) (� �� ) �� + 1� �� � � or | ��� | = | �� | � �(���)(� � �� � ) |� �� | �� + 1� �� � �
(3)
(4)
R = -1
N f =0.75 cycle
N f =0.25 cycle
R=χ
N f >0.25 cycle
N f <0.25 cycle
σ uT σ max
σ max = σ uT
σ min = σ uC σ mean =0
σ mean
0
σ min = σ uC
= N f =0.5cycle
�� + | �� | 2
= ∞ N f =0.5cycle
| �� | σ uT
σ mean σ max = σ uT
σ mean σ max σ min
T-C
C-T
T-T
��
�� 0
C-C
�� − | �� | 2
0
Fig. 1. CFL diagrams for the first cycle CFL lines for �� > | �� | .
T-T or T-C loading
��
D f1(H) and N f1(H)
�� + | �� | 2
R rχ’
R =χ
N f1
D f1(L) and N f1(L)
ΔD f1 /ΔN f
a
R =-1
First cycle CFL line
R rχ
Log dD f /dN f
R r0’
D f2(H) and N f2(H)
R =0
N f2
R = ∞
R r0
R r∞
R
ΔD f2 /ΔN f
R r∞’
a
Fatigue CFL/ N f 1 line
b
R =1
R r1T
R r0
R
R =1
b
R
R r1T
r1C
��
��
D f2(L) and N f2(L)
0
�� − | �� | 2
N f 2 line
Log σ max
(a) (b) Fig. 2. (a) schematic fatigue CFL lines for fatigue behaviour with various stress ratios for �� > | �� | ; (b) log ( dD f /dN f ) versus log σ max . The term N 0 in each equation is to adjust the initial number of cycles for the first cycle failure point. For example, N 0 =0.5 cycle at σ max = σ uT with R =0. The two parameters ( α and β ) can be numerically determined. 2.2 Characteristics of constant fatigue life (CFL) diagram
Made with FlippingBook - Online magazine maker