PSI - Issue 18
Alexey N. Fedorenko et al. / Procedia Structural Integrity 18 (2019) 432–442 A.N. Fedorenko, B.N. Fedulov, E. V. Lomakin / Structural Integrity Procedia 00 (2019) 000–000
442
11
Acknowledgements This research was supported by the Russian Foundation for Basic Research (grant No.18-31-20026). References Bouvet C, Castanié B, Bizeul M, Barrau JJ. Low velocity impact modelling in laminate composite panels with discrete interface elements. Int J Solids Struct 2009;46:2809–21. Hallett SR, Jiang WG, Khan B, Wisnom MR. Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotropic specimens. Compos Sci Technol 2008;68:80–9. Hashin Z. Failure Criteria for Unidirectional Fiber Composites. J Appl Mech 1980;47 (2):329–334. Tsai S. W., Wu E. M. A general theory of strength for anisotropic materials. J Compos Mater 1971;5 (1):58–80. Puck A., Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol 1998;58(7):1045–1067. Soden P. D., Hinton M. J., Kaddour A. S. Biaxial test results for strength and deformation for a range of E-glass and fibre reinforced composite laminates: failure exercise benchmark data. Compos Sci Technol 2002;62(12–13):1489–1514. Dávila CG, Camanho PP, Rose CA. Failure criteria for FRP laminates. J Compos Mater 2005;39:323–45. Pinho ST, Iannucci L, Robinson P, Camanho PP, Da CG. Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear 2006;37:165–76. Camanho PP, Maimı´, P. A continuum damage model for composite laminates : Part I – Constitutive model 2007;39:897–908. P. Maimı´, P.P. Camanho, J.A. Mayugoa, A. Turon, Matrix cracking and delamination in laminated composites. Part I: Ply constitutive law, first ply failure and onset of delamination, Mechanics of Materials, 2011 43 (4): 169–185. Pinho ST, Robinson P, Iannucci L. Fracture toughness of the tensile and compressive fibre failure modes in laminated composites 2006;66:2069– 79. doi:10.1016/j.compscitech.2005.12.023. Laffan MJ, Pinho ST, Robinson P, Iannucci L. Measurement of the in situ ply fracture toughness associated with mode I fibre tensile failure in FRP . Part I : Data reduction. Compos Sci Technol 2010;70:606–13. Bondarchuk, D. and Fedulov, B., 2019. Process modeling of carbon-epoxy composites: residual stress development during cure and analysis of free edge effects. Aviation, 23(1), pp.15-22. Sabik A. Direct shear stress vs strain relation for fiber reinforced composites. Compos Part B Eng 2018;139:24–30. Paepegem W Van, Baere I De, Degrieck J. Modelling the nonlinear shear stress – strain response of glass fibre-reinforced composites . Part II : Model development and finite element simulations 2006;66:1465–78. Totry E, González C, Llorca J. Mechanisms of shear deformation in fiber-reinforced polymers : experiments and simulations 2009:197–209. Makeev A, Ignatius C, He Y, Shonkwiler B. A test method for assessment of shear properties of thick composites. J Compos Mat 2009;43(25):3091– 105. Lomakin E.V., Rabotnov Yu.N. A theory of elasticity for an isotropic body with different moduli in tension and compression. Mechanics of Solids 1978;13(6): 25–30. Jones, R.M., 1977. Stress-strain relations for materials with different moduli in tension and compression. AIAA Journal, 15(1), pp.16-23. Sun, J.Y., Zhu, H.Q., Qin, S.H., Yang, D.L. and He, X.T., 2010. A review on the research of mechanical problems with different moduli in tension and compression. Journal of mechanical science and technology, 24(9), pp.1845-1854. Hahn HT, Tsai SW. Nonlinear elastic behavior of unidirectional composite laminae. Journal of Composite Materials. 1973 Jan;7(1):102-18. Smith EW, Pascoe KJ. The role of shear deformation in the fatigue failure of a glass fiber-reinforced composite. Composites 1977; 8(4):237–243 Chamis, C. C. and Sinclar, J. H. Ten-Deg Off-Axis Shear Properties in Fiber Composites. Experimental Mechanics. 1977; 339-346. Koerber H, Xavier J, Camanho PP. Mechanics of Materials High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation. Mech Mater 2010;42:1004–19. Hsiao HM, DanielR M, Cordes D (1998) Strain rate effects on the transverse compressive and shear behavior of uni- directional composites. J Compos Mater 33(17):1620–1642. Zinoviev P. A., Grigoriev S. V., Lebedeva O. V., Tairova L. P. The strength of multilayered composites under a plane-stress state. Compos Sci Technol 1998;58(7):1209–1223. Hinton M. J., Kaddour A. S., Soden P. D. A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence. Compos Sci Technol 2002;62(2–13):1725–1797. B. N. Fedulov, A. N. Fedorenko, M. M. Kantor, and E. V. Lomakin. Failure analysis of laminated composites based on degradation parameters. Meccanica, 53:359–372, 2017. B. N. Fedulov, A. N. Fedorenko, A. A. Safonov, and E. V. Lomakin. Nonlinear shear behavior and failure of composite materials under plane stress conditions. Acta Mechanica, 228(6):2033–2040, 2017. Lomakin E. V., Fedulov B. N. Nonlinear anisotropic elasticity for laminate composites, Meccanica 2015 (50):1527–1535. Fedorenko AN, Fedulov BN. Effect of elastic properties dependence of the stress state in composite materials. Aerospace Systems 2018:3–7. Miller A. An inelastic constitutive model for monotonic, cyclic, and creep deformation: part I. Equations development and analytical procedures. J Eng Mater Technol 1976; 98(2):97–105.
Made with FlippingBook - Online magazine maker