PSI - Issue 18
Alexey N. Fedorenko et al. / Procedia Structural Integrity 18 (2019) 432–442 A.N. Fedorenko, B.N. Fedulov, E. V. Lomakin / Structural Integrity Procedia 00 (2019) 000–000
439
8
1 3 3 2 1 3 3 2
3 2
2
,
A
A
11 1 0
11
1111
11
1122
22
3 2
2
(9)
,
A
A
22
1122
11
2222
22
22
1 0
1212 A Q ,
1 2
3 2
2 1 0 12
1212 A Q ,
,
12
Q
1 2
where , prime denotes the derivative with respect to parameter and only parameter A 1212 depends on shear parameter Q . The coefficients A ijkl must be defined to guarantee positive-definiteness of the potential of Eq. (8). At first step of approximation a linear dependency from may be supposed. The relation for 12 in Eq. (9) allows a significant reduction. For example, assuming independency of 1212 A on triaxiality and quadratic dependency on shear parameter Q , the equation for shear strain takes form derived by Fedorenko and Fedulov (2018): 2 2 2 1 1111 11 2222 22 1122 11 22 1212 A Q 12 2 , A A A
1 1 2 G
2 2 1 0 12 3
.
(10)
12
12
Eq. 9 allows a combination with damage model assuming dependency of functions A ijkl from damage parameters in consistency with Eq. (3).
1 3 3 2
3 2
2
1 11 ,
,
,
A
A
11 1 0
11
1111
1122
2 22
1 3 3 2
3 2
2
(11)
2 11 ,
,
,
A
A
22
1122
2222
2 22
22
1 0
, ,
1212 A Q
1 2
3 2
2
2 1 0 12
, ,
,
1212 A Q
12
2
Q
Fig. 7. The stress–strain diagrams for laminate composite material under conditions of tension at the angles 0°, 22.5° and 45° to the direction of the warp of the cloth for longitudinal strain and for transverse strain
Made with FlippingBook - Online magazine maker