PSI - Issue 18

Riccardo Fincato et al. / Procedia Structural Integrity 18 (2019) 75–85 Author name / Structural Integrity Procedia 00 (2019) 000–000

84 10

5. Conclusions This paper presented the implementation of an unconventional elasto-viscoplastic model coupled with a ductile damage variable. The present formulation represents an update of the original OSS model adding the similarity centre internal variable for the investigation of cyclic mobility problems. Moreover, the coupling with a ductile damage variable furtherly enriches the field of investigations, allowing the description of the material failure phenomenon. The current version of the algorithm is able to predict the behavior of components/structures subjected to high rate loads, correcting the unrealistic prediction obtained with other conventional approaches. In case of low loading rates, the model recovers the damage subloading surface model formulated in Fincato and Tsutsumi (2017c). The numerical test in section 4 displayed the model response under fully reversed cyclic loading conditions with two loading rates, highlighting the characteristics of the DOSS. Future works will focus the attention on reproducing real experimental tests. References Altenbach, H., & Skrzypek, J. J. (Eds.). (1999). Creep and Damage in Materials and Structures . Vienna: Springer Vienna. https://doi.org/10.1007/978-3-7091-2506-9 Badreddine, H., Yue, Z. M., & Saanouni, K. (2017). Modeling of the induced plastic anisotropy fully coupled with ductile damage under finite strains. International Journal of Solids and Structures , 108 , 49–62. https://doi.org/10.1016/j.ijsolstr.2016.10.028 Badreddine, Houssem, & Saanouni, K. (2017). On the full coupling of plastic anisotropy and anisotropic ductile damage under finite strains. International Journal of Damage Mechanics , 26 (7), 1080–1123. https://doi.org/10.1177/1056789516635729 Bingham, E. C. (2018). Fluidity and Plasticity . Creative Media Partners, LLC. Chaboche, J. L. (1986). Time-independent constitutive theories for cyclic plasticity. International Journal of Plasticity , 2 (2), 149–188. https://doi.org/10.1016/0749-6419(86)90010-0 Drucker, D. C. (1988). Conventional and Unconventional Plastic Response and Representation. Applied Mechanics Reviews , 41 (4), 151. https://doi.org/10.1115/1.3151888 Fincato, R., & Tsutsumi, S. (2016). Numerical modelling of ductile damage mechanics coupled with an unconventional plasticity model. Frattura Ed Integrita Strutturale , 10 (38). https://doi.org/10.3221/IGF-ESIS.38.31 Fincato, R., & Tsutsumi, S. (2017a). Closest-point projection method for the extended subloading surface model. Acta Mechanica , 228 (12). https://doi.org/10.1007/s00707-017-1926-0 Fincato, R., & Tsutsumi, S. (2017b). Effect of the stress triaxiality and Lode angle on the ductile damage evolution. Quarterly Journal of the Japan Welding Society , 35 (2), 185s-189s. Fincato, R., & Tsutsumi, S. (2018a). A numerical study of the return mapping application for the subloading surface model. Engineering Computations , 35 (3), 1314–1343. https://doi.org/10.1108/EC-12-2016-0446 Fincato, R., & Tsutsumi, S. (2018b). A return mapping algorithm for elastoplastic and ductile damage constitutive equations using the subloading surface method. International Journal for Numerical Methods in Engineering , 113 (11), 1729–1754. https://doi.org/10.1002/nme.5718 Fincato, R., & Tsutsumi, S. (2018c). Numerical modeling of the evolution of ductile damage under proportional and non-proportional loading. International Journal of Solids and Structures . https://doi.org/10.1016/j.ijsolstr.2018.10.028 Fincato, R., Tsutsumi, S., & Momii, H. (2018). Ductile damage evolution law for proportional and non-proportional loading conditions. Frattura Ed Integrità Strutturale , 13 (47), 231–246. https://doi.org/10.3221/IGF-ESIS.47.18 Ganjiani, M. (2018). A thermodynamic consistent rate-dependent elastoplastic-damage model. International Journal of Damage Mechanics , 27 (3), 333–356. https://doi.org/10.1177/1056789516676882 Grammenoudis, P., Reckwerth, D., & Tsakmakis, C. (2009). Continuum Damage Models based on Energy Equivalence: Part I — Isotropic Material Response. International Journal of Damage Mechanics , 18 (1), 31–63. https://doi.org/10.1177/1056789508090466 Hashiguchi, K. (1989). Subloading surface model in unconventional plasticity. International Journal of Solids and Structures , 25 (8), 917–945. https://doi.org/10.1016/0020-7683(89)90038-3 Hashiguchi, K. (1994). On the loading criterion. International Journal of Plasticity , 10 (8), 871–878. https://doi.org/10.1016/0749 6419(94)90018-3 Hashiguchi, K. (2009). Elastoplasticity theory . Lecture Notes in Applied and Computational Mechanics (1st ed., Vol. 42). Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-00273-1_1 Hashiguchi, K. (2017). Foundations of elastoplasticity: Subloading surface model . Foundations of Elastoplasticity: Subloading Surface Model .

Made with FlippingBook - Online magazine maker