PSI - Issue 18
Yaroslav Dubyk et al. / Procedia Structural Integrity 18 (2019) 622–629 Yaroslav Dubyk and Iryna Seliverstova / Structural Integrity Procedia 00 (2019) 000–000
624
3
2.1. Harmonic dent Assume the function of displacement in the form:
m
m
m
cos sin u mn
sin cos v mn
cos cos w mn
u C n
x
v C n
x
w C n
x
,
,
(4)
l
l
l
General form of the equation of the dented shell: , x K U F
(5) Here , x F external load vector, , x U displacement vector, , x K stiffness matrix defined as: , , , , , , T u x t v x t w x t U (6)
T
N
2
2
x
F
0 0
N
w
(7)
2 x R
2 2
The stiffness matrix K is symmetric, that is
, uv vu uw wu vw wv K K K K K K : ,
uu K K K H K K K K K K uv vu vv wu wv
uw
K
(8)
vw
ww
Taking into account (8) all elements (9-11) are defined as:
2
2
2 2 2 1 1 2 R
1
2
1 1 R x 2
K
x
, u w w u K K ,
, u v K K
, v u
(9)
, u u
R x
2 2 1
2
2
1
1
x
1
K
1 1
, v w w v K K ,
(10)
, v v
2
2 2
2
2
2 2
2
2
R R
x
R
R
2 2 1
1
1
K
(11)
, w w
2 2
2
2
2
R
x R
Taking into account expansion (4), we obtain an algebraic system of equations with respect to displacements:
2 n l
2
1
1
n
1 2
1 2
R
(12)
u C m mn
v C n mn
w C mn
0
l
R m
m
Made with FlippingBook - Online magazine maker