PSI - Issue 17
Danial J. Armaghani et al. / Procedia Structural Integrity 17 (2019) 924–933 Danial J. Armaghaniet al. / Structural Integrity Procedia 00 (2019) 000 – 000
933
10
Pham, B.T., Khosravi, K. & Prakash, I., (2017a). Application and comparison of decision tree - based machine learning methods in landside susceptibility assessment at pauri garhwal area, uttarakhand, india. Environmental Processes, 4 (3), 711 - 730. Pham, B.T., Bui, D.T., Prakash, I., Nguyen, L.H. & Dholakia, M., (2017b). A comparative study of sequential minimal optimization - based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using gis. Environmental earth sciences, 76 (10), 371. Pham, B.T., Bui, D.T., Pham, H.V., Le, H.Q., Prakash, I. & Dholakia, M., (2017c). Landslide hazard assessment using random subspace fuzzy rules based classifier ensemble and probability analysis of rainfall data: A case study at Mu Cang Chai District, Yen Bai Province (Viet Nam). Journal of the Indian Society of Remote Sensing, 45 (4), 673 - 683. Pham, B.T. & Prakash, I., (2017d). Evaluation and comparison of logitboost ensemble, fisher’s linear discriminant analysis, logistic regression and support vector machines methods for landslide susceptibility mapping. Geocarto International, 1 - 18. Pham, B.T., Shirzadi, A., Bui, D.T., Prakash, I. & Dholakia, M., (2018a). A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: A case study in the Himalayan area, India. International Journal of Sediment Research, 33 (2), 157 - 170. Pham, B.T. & Prakash, I., (2018b). Machine learning methods of kernel logistic regression and classification and regression trees for landslide susceptibility assessment at part of Himalayan area, India. Indian J. Sci. Technol, 11. Placas A, Regan P.E. (1971). Shear failure of reinforced concrete beams, ACI Journal, Proceedings 1971, 68(10), 763–73. Plevris, V., Asteris, P.G. (2014a).Modeling of masonry failure surface under biaxial compressive stress using Neural Networks, Construction and Building Materials, Volume 55, Pages 447 - 461. Plevris, V., Asteris, P.G. (2014b).Modeling of masonry compressive failure using Neural Networks, OPT - i 2014 - 1st International Conference on Engineering and Applied Sciences Optimization, Proceedings, pp. 2843 - 2861. Plevris, V., Asteris, P. (2015). Anisotropic failure criterion for brittle materials using Artificial Neural Networks, COMPDYN 2015 - 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, pp. 2259 - 2272. Psyllaki, P., Stamatiou, K., Iliadis, I., Mourlas, A., Asteris, P., Vaxevanidis, N. (2018). Surface treatment of tool steels against galling failure, MATEC Web of Conferences, 188,04024. Seleemah, A.A. (2005). A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement, Canadian Journal of Civil Engineering, 32(4), pp. 644 - 657. Seleemah, A.A. (2012). A multilayer perceptron for predicting the ultimate, Journal of Civil Engineering and Construction Technology, 3(2), pp. 64 - 79. Sanad, A., Saka, M.P. (2001). Prediction of ultimate shear strength of reinforced - concrete deep beams using neural networks, Journal of Structural Engineering, 127(7), pp. 818 - 828. Tompos, E.J. and Frosch, R.J. (2002). Influence of Beam Size, Longitudinal Reinforcement, and Stirrup Effectiveness on Concrete Shear Strength, ACI Structural Journal, 99(5), 559 - 567. Topçu, I.B., Saridemir, M. (2008). Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic, Computational Materials Science, 41 (3), pp. 305 - 311. Trtnik, G., Kavčič, F., Turk, G. (2009).Prediction of concrete strength using ultraso nic pulse velocity and artificial neural networks, Ultrasonics, 49 (1), pp. 53 - 60. Waszczyszyn, Z., Ziemiański, L. (2001). Neural networks in mechanics of structures and materials - New results and prospects of applications, Computers and Structures, 79 (22 - 25), pp. 2261 - 2276. Xie, Y., Ahmad, S.H., Yu, T., Hino, S., Chung, W. (1994). Shear ductility of reinforced concrete beams of normal and high - strength concrete, ACI Structural Journal, 91(2), 140 - 149. Yoon, Y.S., Cook, W.D., Mitchell, D. (1996). Minimum Shear Reinforcement in Normal, Medium and High Strength Concrete Beams, ACI Structural Journal, 93(5), 576 - 584. Zararis P.D., Karaveziroglou, M.K., Zararis, I.P., Pnevmatikos, G., Sfika, M. (2009). Shear strength of very short over reinforced concrete beams, 16th Concrete Conference, Paphos, Cyprus, Oct 21 - 23 [in Greek].
Made with FlippingBook Digital Publishing Software