PSI - Issue 17
Zizhen Zhao et al. / Procedia Structural Integrity 17 (2019) 555–561 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
561
7
Goswami T. Development of generic creep – fatigue life prediction models. Mater Design. 2004;25(4):277-288. Fournier B, Sauzay M, Caës C, et al. Creep – fatigue – oxidation interactions in a 9Cr – 1Mo martensitic steel. Part III: Lifetime prediction. Int J Fatigue. 2008;30(10):1797-1812. Brinkman CR, Strizak JP, Booker MK, Jaske CE. Time-dependent strain-controlled fatigue behavior of annealed 2 14 Cr-1 Mo steel for use in nuclear steam generator design. J Nucl Mater. 1976;62(2 – 3):181-204. Challenger K, Vining P. The effects of hold period on the fatigue crack growth rate of 2 1/4 Cr-1Mo steel at elevated temperatures. J Eng Mater Technol. 1983;105(4):280-285. Hecht R, Weertman J. The effect of environment on high-temperature hold time fatigue behavior of annealed 2.25 pct Cr 1 pct Mo steel. Metall Mater Trans A. 1998;29(8):2137-2145. Kschinka BA, Stubbins AE. Creep-fatigue-environment interaction in a bainitic 2.25 wt.% Cr-1wt.% Mo steel forging. 1989;110:89-102. Tian Y, Yu D, Zhao Z, Chen G, Chen X. Low cycle fatigue and creep – fatigue interaction behaviour of 2.25 Cr1MoV steel at elevated temperature. Mater High Temp. 2016;33(1):75-84. Zhang J, Yu D, Zhao Z, Zhang Z, Chen G, Chen X. Low cycle fatigue of 2.25Cr1Mo steel with tensile and compressed hold loading at elevated temperature. Mater Sci Eng, A. 2016;667:251-260.
Made with FlippingBook Digital Publishing Software