PSI - Issue 16
Zinoviy Nazarchuk et al. / Procedia Structural Integrity 16 (2019) 11–18 Zinoviy Nazarchuk, Leonid Muravsky, Dozyslav Kuryliak/ Structural Integrity Procedia 00 (2019) 000 – 000
13 3
( i y u u y x L ) 0, 0;
( ,0)
,
(3)
0, t i u u u y x L 0;
( , ) (0, ) .
(4)
Here j is the exciting wave propagating in the negative direction of the Ox axis, 2 2 1/ 2 i k k k is the wave number ( , 0 k k ). We find a solu tion of the boundary-value problem (1) – (4) in the class of functions realizing the limit absorption as x and satisfying the conditions at the crack tips: 1/ 2 u , 1/ 2 y u , if 2 2 1/ 2 [ ] 0 x y , 2 2 1/ 2 [( ) ] 0 x L y . Applying the Fourier transform to Eqs. (1) – (4) we derive the Wiener-Hopf equation of the problem as [( (2 1) / 2 ) j ] j d k , Re 0 j , 1, 2,... j ; ( , ) u x y e i sin( ) j x y
( ) , i α L e [ ( α) (α)] ( ) ( ) 0 M J
(5)
1
( ) ( α) and
( α)
0 :{ } , 0 Im k ; 0
1 ( ) J are unknown
Re i Im ( i ) ,
,
where
( ) ( α) is
( α) is regular in the complex plane
0 ,
functions with known regularity properties, namely,
i j ,
0 Re j , where it has a simple pole. Function 1 ( ) J ( ) M is a known function regular in the
0 , except the point
regular in the half plane
is an entire function expressed via an integral within certain finite limits, strip and admitting simple zeros and poles outside the strip ;
( ) ch( ) /[ γsh( )] M d d ,
(α,0) iβ /[ 2π(α iγ )] j L j j e
( ) ( α) U
( α) U
(α,0) iβ /[ 2π(α iγ )] j j
,
,
( α, 0) U ,
( α, 0) U are unknown regular functions in overlapping half-planes
2 ( ) k , Re 0 ; 2 1/ 2
0 Im respectively:
0 Im and
L
1/ 2 ( , 0) (2 )
1/ 2 ( , 0) (2 )
i ( , 0) x u x e dx
i ( u x e dx ) ( , 0) x L
U
U
,
.
y
y
0
Nazarchuk et al. (2011) have shown that the solution of the functional Wiener-Hopf equation (5) is reduced to the following infinite system of linear algebraic equations (ISLAE): [ ] I A X F . (6)
0 { } r r F f
, if n ; I is the identity matrix,
( ) ( ) ( ), i
1 ( )
0 { } n n X x
ns
n x O n
,
,
Here
x M i
r f
n
ns
, 0 :{ } rn r n A a ,
i s k ;
2 [ (2 1) / (4 ) n 2
2 d k
2 1/ 2
2 ns n d k [( / )
2 1/ 2
M i
)] ,
,
, 0
( ) / [ 2 (
]
]
j
j
rs
j
nc
L
L
,
(7)
2 i d e
1
2
2 {[ (i )] ( M
1
a
[ (i )] M
e
)( ms rs ms ms ms
)}
ns
ms
rn
n
ns
ns
m
ns
m
0
0 n and
0 n ;
1/ 2
1 n for
n
for
where
i /( ) d n
i /( ) 1 d n
M
kd
[1 /(i )] e
{i sin [1 /(i )] [1 /(i )] k kd e
( ) cos
}
.
nc
s
ns
0
n
n
1
1
Made with FlippingBook Online newsletter creator