PSI - Issue 16
Grzegorz Lesiuk et al. / Procedia Structural Integrity 16 (2019) 51–58 Grzegorz Lesiuk et al. / Structural Integrity Procedia 00 (2019) 000 – 000
58
8
References
ASTM E647-15a, 2015. Standard Test Method for Measurement of Fatigue Crack Growth Rates. Correia, J. A. F. O., Huffman, P. J., De Jesus, A. M. P., Lesiuk, G., Castro, J. M., Calcada, R. A. B., & Bertod, F., 2018. Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density. Strength of Materials 50(4), 620 – 635. Correia, J. A. F. O., Raposo, P., Muniz- Calvente, M., Blasón, S., Lesiuk, G., De Jesus, A. M. P., Canteli, A. F., 2017. A generalization of the fatigue Kohout- Věchet model for several fatigue damage parameters. Engineering Fracture Mechanics 185, 284 – 300. De Jesus A.M.P., Ribeiro A.S., Fernandes A.A., 2006. Low cycle fatigue and cyclic elastoplastic behaviour of the P355NL1 steel, ASME J. Pressure Vessel Technology 128(3), 298 – 304. Ferreira, J., Correia, J. A., Lesiuk, G., González, S. B., Gonzalez, M. C. R., de Jesus, A. M., & Fernández -Canteli, A., 2018. Pre-Strain Effects on Mixed-Mode Fatigue Crack Propagation Behaviour of the P355NL1 Pressure Vessels Steel, ASME 2018 Pressure Vessels and Piping Conference V06AT06A027 – V06AT06A027. Lesiuk, G., Szata, M., Rozumek, D., Marciniak, Z., Correia, J., & De Jesus, A., 2018. Energy response of S355 and 41Cr4 steel during fatigue crack growth process. The Journal of Strain Analysis for Engineering Design 53(8), 663 – 675. Lesiuk, G., 2019. Application of a New, Energy- Based ΔS* Crack Driving Force for Fatigue Crack Growth Rate Description. Materials 12(3), 518. Lesiuk, G. 2019a. Mixed mode (I+ II, I+ III) fatigue crack growth rate description in P355NL1 and 18G2A steel using new energy parameter based on J-integral approach. Engineering Failure Analysis 99, 263 – 272. Noroozi, A. H., Glinka, G., & Lambert, S., 2017. A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force. International Journal of Fatigue 29(9-11), 1616 – 1633. Nykyforchyn, H.M., Zvirko, O.I., Tsyrulnyk, O.T., 2016. Hydrogen assisted macrodelamination in gas lateral pipe. Procedia Structural Integrity 2, 501 – 508. Paris, P. C. 1961. A rational analytic theory of fatigue. The trend in engineering 13, 9. Rozumek, D., & Macha, E., 2006. Elastic – plastic fatigue crack growth in 18G2A steel under proportional bending with torsion loading. Fatigue & Fracture of Engineering Materials & Structures 29(2), 135 – 144. Rozumek D., Marciniak Z., 2012. The investigation of crack growth in specimens with rectangular cross-sections under out-of-phase bending and torsional loading. International. Journal of Fatigue 39, 81 – 87. Rozumek, D., Marciniak, Z., Lesiuk, G., Correia, J. A., & de Jesus, A. M., 2018. Experimental and numerical investigation of mixed mode I+ II and I+ III fatigue crack growth in S355J0 steel. International Journal of Fatigue 113, 160 – 170. Student, O.Z., Dudziński, W., Nykyforchyn, H.M. & Kamińska, A. , 1999. Effect of high-temperature degradation of heat-resistant steel on the mechanical and fractographic characteristics of fatigue crack growth Materials Science 35 (4), 499 – 508. Szata, M., & Lesiuk, G., 2009. Algorithms for the estimation of fatigue crack growth using energy method. Archives of Civil and Mechanical Engineering 9(1), 119 – 134. Vosikovsky, O., 1979. The effect of stress ratio on fatigue crack growth rates in steels. Engineering Fracture Mechanics, 11(3), 595 – 602. Zhu, S. P., Yue, P., Yu, Z. Y., & Wang, Q., 2017. A combined high and low cycle fatigue model for life prediction of turbine blades. Materials 10(7), 698.
Made with FlippingBook Online newsletter creator