PSI - Issue 16

Hryhoriy Nykyforchyn et al. / Procedia Structural Integrity 16 (2019) 153–160 Hryhoriy Nykyforchyn et al. / StructuralIntegrity Procedia 00 (2019) 000 – 000

160

8

X60 steels after SCC testing confirmed the key role of hydrogen in formation of dissipated damaging in bulk of a metal due to decohesion along pearlite and ferrite grains and in intergranular cracking at SCC testing as well. Acknowledgements This research has been supported by the NATO in the Science for Peace and Security Programme under the Project G5055. Bolzon, G., Rivolta, B., Nykyforchyn, H., Zvirko, O., 2017. Micro and macro mechanical analysis of gas pipeline steels. Procedia Structural Integrity 5, 627 – 632. Kharchenko, E.V., Student, O.Z., Chumalo, H.V., 2017. Influence of the degradation of 17G1S steel on its properties after operation in the gas main. Materials Science 53(2), 207 – 215. Kosarevych, Ya., Student, O.Z., Svirs’ka , L.M., Rusyn, B.P., Nykyforchyn, H.M., 2013. Computer analysis of characteristic elements of fractographic images. Materials Science 48(4), 474 – 481. Krechkovs’ka, H.V., Yanovs’ky, S.R., Student, O.Z., Nykyforchyn, H.M., 2015. Fractographic signs of the in-service degradation of welded joints of oil mains. Materials Science 51(2), 165 – 171. Krechkovs’ka, H.V., 2016. Fractographic signs of the mechanisms of transportation of hydrogen in structural steels. Materials Science 51, No. 4, 509 – 513. Maruschak, P., Bishchak, R., Konovalenk o, I., Menou, A., Brezinová, J. 2014a. Effect of long term operation on degradation of material of main gas pipelines. Materials Science Forum 782, 279 – 283. Maruschak, P., Danyliuk, I., Prentkovskis, O., Bishchak, R., Pylypenko, A., Sorochak A., 2014b. Degradation of the main gas pipeline material and mechanisms of its fracture. Journal of Civil Engineering and Management 20(6), 864 – 872. Maruschak, P., Konovalenko, I., Prentkovskis, O., Tsyrulnyk, O., 2016. Digital analysis of shape and size of dimples of ductile tearing on fracture surface of long-operated steel. Procedia Engineering 134, 437 – 442. Mil'man, Yu.V., Nykyforchyn, H.M., Hrinkevych, K.E., Tsyrul'nyk, O.T., Tkachenko, I.V., Voloshyn, V.A., Mordel, L.V., 2012. Assessment of the in-service degradation of pipeline steel by destructive and nondestructive methods. Materials Science 47, No. 5, 583 – 589. Nazarchuk, Z.Т., Nykyforchyn, H.M., 2018. Structural and corrosion fracture mechanics as components of the physicochemical me chanics of materials. Materials Science 54(1), 7 – 21. Nykyforchyn, H.M., Student, O.Z. 2001. Influence of hydrogen of the formation of fatigue thresholds in structural steels. Materials Science 37(2), 252 – 263. Nykyforchyn, H.M. Student, O.Z., Markov, A.D., 2007. Abnormal manifestation of the high-temperature degradation of the weld metal of a low alloy steel welded joint. Materials Science 43(1), 77 – 84. Nykyforchyn, H.M., Tsyrul'nyk, O.T., Petryna, D.Yu., Hredil', M.I., 2009. Degradation of steels used in gas main pipelines during their 40-year operation. Strength of Materials 41(5), 501 – 505. Nykyforchyn H., Lunarska E., Tsyrulnyk O.T., Nikiforov K., Genarro M.E., Gabetta G., 2010. Environmentally assisted “in - bulk” steel degradation of long term service gas trunkline. Engineering Failure Analysis 17, 624 – 632. Nykyforchyn, H., Zvirko, O., Tsyrulnyk, O., Kret, N., 2017. Analysis and mechanical properties characterization of operated gas main elbow with hydrogen assisted large-scale delamination. Engineering Failure Analysis 82, 364 – 377. Parkins, R.N., 2000. A Review of Stress Corrosion Cracking of High Pressure Gas Pipelines. CORROSION 2000, Orlando, Florida NACE International, Houston. Paper NACE-00363. Student, O., Krechkovs’ka, H., 2016. Visualization of damages of the main pipeli nes using cycling hydrotesting. Procedia Structural Integrity 2, 549 – 556. Student, O.Z., 1998. Accelerated method for hydrogen degradation of structural steel. Materials Science 34(4), 497 – 507. Student, O.Z., Dudziński, W., Nykyforchyn, H.M., Kamińska, A., 1999. Effect of high -temperature degradation of heat-resistant steel on the mechanical and fractographic characteristics of fatigue crack growth. Materials Science 35(4), 499 – 508. Student, O.Z., Markov, A.D., Nykyforchyn, H.M., 2006. Specific features of the influence of hydrogen on the properties and mechanism of fracture of the metal of welded joints of steam pipelines at thermal power plants. Materials Science 42(4), 451 – 460. Student, O.Z., Rusyn, B.P., Kysil’, B.P., Kobasyar, M.I., Stakhiv, T.P., Markov, A.D., 2003. Quantitative analysis of structu ral changes in steel caused by high-temperature holding in hydrogen. Materials Science 39(1), 17 – 24. Taylor, N., Nykyforchyn, H.M., Tsyrulnyk, O.T., Student, O.Z., 2009. Effect of hydrogenation on the fracture mode of a reactor pressure-vessel steel. Materials Science 45(5), 613 – 625. Tsyrul’nyk, О.Т., Kret, N.V., Voloshyn, V.A., Zvir ko, O.I., 2018. A procedure of laboratory degradation of structural steels. Materials Science 53(5), 674 – 683. Tsyrulnyk, O.T., Slobodyan, Z.V., Zvirko, O.I., Hredil’, M. I., Nykyforchyn, H.M., Gabetta, G., 2008. Influence of operation of Kh52 steel on corrosion processes in a model solution of gas condensate. Materials Science 44(5), 619 – 629. Zvirko, O.I., Savula, S.F., Tsependa, V.M., Gabetta, G., Nykyforchyn, H.M., 2016. Stress corrosion cracking of gas pipeline steels of different strength. Procedia Structural Integrity 2, 509 – 516. References

Made with FlippingBook Online newsletter creator