PSI - Issue 14

Rakesh Kumar et al. / Procedia Structural Integrity 14 (2019) 668–675 Author name / Structural Integrity Procedia 00 (2018) 000–000

675

8

Acknowledgements The authors wish to extend their sincere thanks to the Science & Engineering Research Board (SERB), Department of Science & Technology, Government of India, for providing support for this work under SR/FTP/ETA-0118/2014. References Beachem, C. D. 1972. A New Model for Hydrogen-Assisted Cracking (Hydrogen ‘Embrittlement’). Metallurgical Transactions 3 (2): 441–55. Birnbaum, H. K., and P. Sofronis. 1994. Hydrogen-Enhanced Localized Plasticity-a Mechanism for Hydrogen-Related Fracture. Materials Science and Engineering A 176 (1–2): 191–202. Castelluccio, G M., Geller, C B. and Mcdowell D L. 2018. A Rationale for Modeling Hydrogen Effects on Plastic Deformation across Scales in FCC Metals. International Journal of Plasticity . Engels, Philipp, Anxin Ma, and Alexander Hartmaier. 2012. Continuum Simulation of the Evolution of Dislocation Densities during Nanoindentation. International Journal of Plasticity 38, 159–69. Fatemi, Ali, and Darrell F. Socie. 1988. A Critical Plane Approach To Multiaxial Fatigue Damage Including Out-of-Phase Loading. Fatigue & Fracture of Engineering Materials & Structures 11 (3), 149–65. Fleck, NA, Muller, GM., Ashby, MF. and Hutchinson, JW. 1994. Strain Gradient Plasticity: Theory and Experiment 42 (2), 475–87. John, C. St., and Gerberich, WW. 1973. The Effect of Loading Mode on Hydrogen Embrittlement. Metallurgical Transactions 4 (2), 589–94. Johnson, W. H. 1875. On Some Remarkable Change Produced in Iron and Steel by the Action of Hydrogen and Acids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 23, 168-179. Kocks, U F. 1985. Kinetics of Solution Hardening, Metallurgical Transactions A 16, 2109–29. Krom, A.H.M., R.W.J. Koers, and A. Bakker. 1999. Hydrogen Transport near a Blunting Crack Tip. J. Mech. Phys. Solids 47, 971-992. Krupp, U. 2007. Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts . Wiley-VCH Verlag Gmbh & Co. KGaA . Lynch, S. P. 2011. Hydrogen Embrittlement (HE) Phenomena and Mechanisms. Stress Corrosion Cracking: Theory and Practice 30, 90–130. Ma, A. 2006. Modeling the Constitutive Behavior of Polycrystalline Metals Based on Dislocation Mechanisms. PhD Thesis, RWTH Aachen. Ma, Anxin, and Alexander Hartmaier. 2014. On the Influence of Isotropic and Kinematic Hardening Caused by Strain Gradients on the Deformation Behaviour of Polycrystals. Philosophical Magazine 94 (2), 125–40. Manonukul, A., and F. P. E. Dunne. 2004. High- and Low-Cycle Fatigue Crack Initiation Plasticity Using Polycrystal. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 460, 1881–1903. Mecking, H., and U. F. Kocks. 1981. Kinetics of Flow and Strain-Hardening. Acta Metallurgica 29 (11), 1865–75. Nagumo, M., Nakamura M., Takai K. 2001. Hydrogen Thermal Desorption Relevant to Delayed-Fracture Susceptibility of High Strength Steels. Metallurgical and Materials Transactions A 32, 339–47. Nagumo, Michihiko. 2007. Mechanism of Hydrogen-Related Failure II. Zairyo-to-Kankyo 56 (9), 382–94. Novak, P., R. Yuan, B. P. Somerday, P. Sofronis, and R. O. Ritchie. 2010. A Statistical, Physical-Based, Micro-Mechanical Model of Hydrogen Induced Intergranular Fracture in Steel. Journal of the Mechanics and Physics of Solids 58 (2), 206–26. Oriani R.A. 1970. The Diffusion and Trapping of Hydrogen in Steel. Acta Metallurgica 18, 147–57. Oriani R.A. 1972. A Mechanistic Theory of Hydrogen Embrittlement of Steels. Technological Aspects , 76 (8), 848–57. Palumbo, G., P. J. King, K. T. Aust, U. Erb, and P. C. Lichtenberger. 1991. Grain Boundary Design and Control for Intergranular Stress Corrosion Resistance. Scripta Metallurgica et Materiala 25 (8), 1775–80. Rimoli, J J, and M Ortiz. 2010. A Three-Dimensional Multiscale Model of Intergranular Hydrogen-Assisted Cracking 90 (21): 2939–63. Robertson, I., Sofronis P., A. Nagao, M. L. Martin, S. Wang, D. W. Gross, and K. E. Nygren. 2015. Hydrogen Embrittlement Understood. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 46 (6): 2323–41. Schebler, G. 2011. On the Mechanics of the Hydrogen Interaction with Single Crystal Plasticity. MS Thesis, Univ. of Illinois at Urbana-champain Sofronis, P, R M McMeecking. 1989. Numerical Analysis of Hydrogen Transport near a Blunting Crack Tip. J. Mech. Phys. Solids 37, 217–350. Sofronis, P., Robertson I , Y Liang, T David, and N Aravas. 2001. Recent Advances in the Study of Hydrogen Embrittlement at Univ. of Illinois. Yagodzinskyy Y., Saukkonen T., Hänninen H., F. Tuomisto, S. Barannikova, L. Zuev. 2008. Effect of Hydrogen on Plastic Strain Localization in Single Crystals of Nickel and Austenitic Stainless Steel. In Proceedings of the 2008 International Hydrogen Conference, Eds., 97–104. Arora, A., Kumar, R., and Mahajan, D.K. 2019. In-Situ Study of the Effect of Hydrogen on Fatigue Crack Initiation in Polycrystalline Nickel. Structural Integrity Procedia .

Made with FlippingBook Annual report maker