PSI - Issue 14

D. Anupama Krishna et al. / Procedia Structural Integrity 14 (2019) 384–394 A. Krishna et al. / Structural Integrity Procedia 00 (2018) 000 – 000

388

5

A linear regression model was fitted for the experimental data obtained from the testing of 120 cube specimens of the present study. The modified equations consider the linear dependence between the two explanatory variables, compressive strength and temperature as in the Eurocode 2 model [EN 1992-1-2-2004], ASCE model 1992 and published literature.

Table 3: Compressive Strength models of concrete at high temperature Literature

Models at elevated temperature

f' c T C o 100  ) ' (1.067 0.00067 T  ) ' (1.44 0.0016 T f c 

EN 1992-1-2-2004

f' cT 

' f c f cT 

C T

C

100

400

 

o

o

' f cT

T o C 400 

o C T o C 450 20  

ASCE manual (1992)

f' cT 

f' c

   

      

    T

1000 20

' f cT

 ' 2.011 2.353 f c

C T   0  f' cT T o C 874  C o o 874 450

 T  T

Chang et al. ( 2006)

f' cT f' cT

f' c f' c

1.01 0.00055  1.15 0.00125  

C T

C

20

200

 

o

o

C T

C o

200

800

 

o

   20 003125 1 0.    T f' c f' cT T o C 100  f' c f' cT 0.75  C C T o o 400 100   ) ' (1.33 0.00145 ' T f c f cT   T o C 400    

Kodur et al . (2004)

 T

Lie et al. (1986)

f' cT f cT '

f' c 1 0.001   T o C 500  ) ' (1.375 0.00175 T f c  

C T   0  f' cT T o C 700  o o 700 500

C

 T

Present study

f'

f'  C T c

1.0032 0.00044 

cT

C o

20

400

   f' c

o

 T

f'

1.4163 0.0016 

 C T

cT

C o

400

800

 

o

C o 800 

0  f' cT T

Fig. 2. Variation of Normalized compressive strength with temperature from various models.

Made with FlippingBook Annual report maker