PSI - Issue 13
B.A. Stratula et al. / Procedia Structural Integrity 13 (2018) 1402–1407 Author name / Structural Integrity Procedia 00 (2018) 000 – 000
1404
3
12 1 2 , 2 3 . We define the orientation of the critical plane with the components of the normal: 2 1 1 0 x n , 2 2 2 0 x n , 2 3 3 0 x n , 1 2 3 1 x x x . It can be shown that the problem of determining the critical plane for a triaxial stress state reduces to determining the maximum of the function 2 2 2 2 3 12 2 13 3 12 2 13 3 1 12 2 13 3 ( , ) 2 2 F F F x x x x x x x x under constraints 2 3 0 1 x x , 2 0 x , 3 0 x . Let us present the results of solving this problem for all possible values of the maxima and variations of the principal stresses. I. If 12 12 13 13 / / , 12 0 , 13 0 , then I-a. For the case 12 13 conditions of extremum for 2 3 ( , ) F x x : 13 1 3 , 23
x
2 , 3 3 x 12 23 / ( )
13 23 / (
)
2
2 3 ( , ) F x x :
0 conditions of extremum for
I-b. For the case
12
13
2 3 12 / ( ) S x x
Here is denoted
13 12 2 0
12 F 4
12 , 13 12 /
4 F
/ ,
13
13
13 T 12 2
12 13 S , 13 12
2 2 2 / S T , 2 13 / S
2 2 S T S 2 3 12 / /
12 13 0 , 12 13 .
12 then 13 13 / /
II. If 12
2 3 ( , ) F x x :
Conditions of extremum
2
x x
12 1 / 4
/ 2
2 3
12
Found values ( 2 x , 3 x ) should satisfy inequalities
2 2 3 1 x x and conditions of maximum 0 x , 3 0 x ,
2 12 13 23 3 0 x 4
2 13 12 23 2 0 x . 4
2 3 ( , ) F x x :
,
These inequalities follow from the condition that the quadratic form is negative 2 2 2 2 2 2 2 3 3 2 2 2 3 2 3 ( ) 2 ( ) 0 F F F dx dx dx dx x x x x If such values do not exist, then it needs to find maximum
2 3 ( , ) F x x on boundaries: 2 0 x , or 3 0 x , or 2
3 1 x x .
2 3 ( , ) F x x is reached for values:
III. In this case maximum
2
0 x ,
x
13 1 / 4
/ 2
3
13
2
2
3 0 x ,
x
12 1 / 4
/ 2
2
12
Made with FlippingBook. PDF to flipbook with ease