PSI - Issue 13
Yuebao Lei / Procedia Structural Integrity 13 (2018) 571–577 Y Lei/ Structural Integr ty P o edi 00 (2018) 000–000
575
15
15
(a)
(b)
Predicted (Opt-2 FAC) FE, pure tension ( λ=0) FE, combined tension and bending (λ=0.5)
Predicted (Opt-2 FAC) FE, pure tension ( λ= λ1=0) FE, bi-axial tension (λ1=0.5) FE, bi-axial tension (λ1=1)
10
10
FE, pure bending ( λ=∞) a / t =0.5, a / c =0.6, c/W=0.25 Ramberg-Osgood material n =5, α =1, σ o =340 MPa FE: Lei (2004(1),(2),(3))
J / J e
J / J e
a / t =0.4, a / c =0.2, c/W=0.0625 Ramberg-Osgood material n =5, α =1, σ o =200 MPa FE: Wang (2006)
5
5
0
0
0.0
0.5
1.0
1.5
2.0
0.0
0.5
1.0
1.5
2.0
ϭ ref / ϭ o
ϭ ref / ϭ o
Fig.2 Comparison of normalised J values at the deepest point between FE and the predictions using the reference stress method for plates with semi-elliptical surface cracks: (a) combined tension and bending and (b) bi-axial loading
8
15
(b)
(a)
Predicted (Opt-2 FAC) FE, a/t=0.1 FE, a/t=0.3 FE, a/t=0.5 FE, a/t=0.75 Cylinder R m / t =5, circumferental internal crack: θ / π=0.25 Ramberg-Osgood material
Predicted (Opt-2 FAC) FE, a/t=0.1, a/c=0.022 FE, a/t=0.4, a/c=0.089 FE, a/t=0.75, a/c=0.168 Cylinder R m / t =5, axial internal crack Ramberg-Osgood material
6
10
J / J e
4
J / J e
n =3, α =1, σ o =400 MPa FE: Kim et al. (2004)
5
n =5, α =1, σ o =400 MPa FE: Kim et al. (2002)
2
0
0
0.0
0.5
1.0
1.5
2.0
0.0
0.5
1.0
1.5
2.0
σ ref / 0
σ ref / 0
15
15
(c)
(d)
Predicted (Opt-2 FAC) FE, a/t = 0.1 FE, a/t = 0.2 FE, a/t = 0.4 FE, a/t = 0.5 Cylinder R m / t =4.5, circumferental external crack: θ / π=0.12 Ramberg-Osgood material n =5, α =1, σ o =400 MPa FE: Chiodo and Ruggieri (2010)
Predicted (Opt-2 FAC) FE, a/t=0.1 FE, a/t=0.3 FE, a/t=0.5 FE, a/t=0.75 Cylinder R m / t =5, circumferental internal crack: θ / π=0.25 Ramberg-Osgood material
10
10
J / J e
J / J e
5
5
n =5, α =1, σ o =400 MPa FE: Kim et al. (2002)
0
0
0.0
0.5
1.0
1.5
2.0
0.0
0.5
1.0
1.5
2.0
σ ref / 0
σ ref / 0
Fig. 3 Comparison of normalised J values at the deepest point between FE and the predictions using the reference stress method for cylinders with axial/circumferential semi-elliptical surface cracks: (a) axial internal cracks under pressure, (b) circumferential internal cracks under pressure, (c) circumferential internal cracks under global bending and (d) circumferential external cracks under global bending
8
(a)
8
(b)
Predicted (Opt-2 FAC) FE, internal crack, pressure FE, external crack, in-plane bending
Predicted (Opt-2 FAC) FE, internal crack, pressure FE, internal crack, out-of-plane bending FE, internal crack, in-plane+out-of-plane bending
6
6
FE, internal crack, in-plane bending+pressure FE, internal crack, in-plane+out-of-plane bending Elbow R c / r m =4, r m / t =10 Axial semi-elliptical cracks
J / J e
4
Elbow R c / r m =4, or 6, r m / t =10 Circumferential semi-elliptical cracks
J / J e
4
a/t=0.25, a/c=1/3 n =6, σ y =185 MPa FE: Kayser(2016)
a/t=0.25, a/c=1/3 n =6, σ y =185 MPa FE: Kayser(2016)
2
2
0
0
0.0
0.5
1.0
1.5
0.0
0.5
1.0
1.5
σ ref / y
σ ref / y
Fig. 4 Comparison of normalised J values at the deepest point between FE and the predictions using the reference stress method for elbows with axial/circumferential semi-elliptical surface cracks: (a) axial cracks and (b) circumferential cracks
Made with FlippingBook. PDF to flipbook with ease