PSI - Issue 13
N.S. Selyutina et al. / Procedia Structural Integrity 13 (2018) 705–709 Author name / Structural Integrity Procedia 00 (2018) 000 – 000
709
5
Acknowledgements
The work is supported by the Russian Foundation for Basic Research (RFBR) Pr. No. 17-01-00618.Sections 3-5 were created by N.S. Selyutina supported by the Russian Science Foundation (RSF) Pr. No. 17-11-01053.
References
Alam, M.S., Chakraborty, T., Matsagar, V., Rao, K.S., Sharma, P., Singh, M., 2015. Characterization of Kota sandstone under different strain rates in uniaxial loading, Geotechnical and Geological Engineering 33(1), 143 – 152. Brara, A., Klepaczko, J.R., 2006. Experimental characterization of concrete in dynamic tension, Mechanics of Materials 38, 253 – 267. Bratov, V.A., Gruzdkov, A.A., Krivosheev, S.I., Petrov Yu.V., 2004. The energy balance of the initiating of the crack growth in case of dynamic loading, Doklady Akademii Nauk 396 (3), 345 – 348. Cadoni, E., Labibes, K., Albertini, C., Berra, M., Giangrasso, M., 2001. Strain-rate effect on the tensile behaviour of concrete at different relative humidity levels, Materials and Structures 34, 21 – 26. Hao, Y., Hao, H., 2013. Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split pressure bar tests. Construction and Building Materials 48, 521 – 532. Huang, S., Xia, K., Yan, F., Feng, X., 2010. An experimental study of the rate dependence of tensile strength softening of Longyou Sandstone. Rock Mechanics and Rock Engineering 43, 677 – 683. Kruszka, L., Mocko, W., Fenu, L., Cadoni, E., 2015. Comparative experimental study of dynamic compressive strength of mortar with glass and basalt fibres. EPJ Web of Conferences 94, 05008. Lou, W., 1994. Dynamic fracture behaviour of dry and waterlogged granites. Explosion and shock waves 14 (3), 249 – 254. Mishra, S., Meena, H., Parashar, V., Khetwal, A., Chakraborty, T., Matsagar, V., Chandel, P., Singh, M., 2018. High strain rate response of rocks under dynamic loading using split Hopkinson pressure bar, Geotechnical and Geological Engineering 36, 531 – 549. Morozov, N., Petrov, Y., 2000. Dynamics of Fracture. Springer, Berlin-Heidelberg-New York. Ogata, Y., Jung, W., Kubota, S., Wada, Y., 2004. Effect of the strain rate and water saturation for the dynamic tensile strength of rocks 465 – 466, 361 – 366. Okubo, S., Nishimatsu, He C., Chu S.Y., 1992. Loading rate dependency of uniaxial compressive strength of rock under water-saturated condition. Journal of the Society of Materials Science 41(463), 403 – 409. Petrov, Yu.V., 1991. On the “quantum” nature of dynamic fracture in brittle solids. Sov. Phys. Dokl. 36, 802 – 804. Petrov, Y.V., Utkin, A.A., 1989. Dependence of the dynamic strength on loading rate, Sov. Mater. Science 25(2), 153 – 156. Petrov, Y.V., Morozov, N.F., 1994. On the modeling of fracture of brittle solids. J. Appl. Mech. 61 (3), 710 – 712. Petrov, Y.V., Smirnov, I.V., Utkin, A.A., 2010. Effect of strain-rate strength dependence in nanosecond load duration range, Mechanics of Solids 45 (3), 476 – 484. Petrov, Yu.V., 2004. Incubation time criterion and the pulsed strength of continua: Fracture, cavitation, and electrical breakdown. Doklady Physics 49 (4), 246 – 249. Petrov, Yu.V., Gruzdkov, A.A., Bratov, V.A., 2012a. Structural-temporal theory of fracture as a multiscale process. Physical Mesomechanics 15, 232 – 237. Petrov Y.V., Karihaloo, B.L., Bratov, V.V., Bragov, A.M., 2012b. Multi-scale dynamic fracture model for quasi-brittle materials. International Journal of Engineering Science 61, 3 – 9. Petrov, Y., Smirnov, I., Evstifeev, A., Selyutina N., 2013. Temporal peculiarities of brittle fracture of rocks and concrete. Frattura ed Integrità Strutturale 24, 112 – 118. Reinhardt, H.W., Rossi, P., Mier, J.G.M., 1990. Joint investigation of concrete at high rates of loading. Mater. Struct. 23, 213 – 216. Rossi, P., Mier, J.G.M.V., Toutlemonde, F., Maou, F., Boulay, C., 1994. Effect of loading rate on the strength of concrete subjected to uniaxial tension. Materials and Structures 27, 260 – 264. Schuler, H., Mayrhofer, C., Thoma, K., 2006. Spall experiments for measurement of the tensile strength and fracture energy of concrete at high strain rates, International Journal of Impact Engineering 32, 1635 – 1650. Selyutina, N., Petrov, Y., 2016. The dynamic strength of concrete and macroscopic temporal parameter characterized in fracture process, Procedia Structural Integrity 2, 438 – 445. Smirnov, V.I., Petrov, Y.V., 2018. Effect of pulse shape on spall strength, Journal of Applied Mechanics and Technical Physics 59 (2), 303 – 309. Yan, D., Lin, G., 2006. Dynamic properties of concrete in direct tension, Cement Concrete Research 36 (2006) 1371 – 1378. Zhou, Z., Cai, X., Zhao, Y., Chen, L., Xiong, C., Li, X., 2016. Strength characteristics of dry and saturated rock at different strain rate, Transactions Nonferrous Metals Society of China 26, 1919 – 1925. Zhou, J., Ding, N., 2014. Moisture effect on compressive behavior of concrete under dynamic loading, Journal of Central South University 21, 4714−4722. Zhou, X.Q., Hao, H., 2008. Modelling of compressive behaviour of concrete-like materials at high strain rate, International Journal of Solids and Structures 45 (17), 4648 – 4661. Zhang, Q.B., Zhao, J. 2014. A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock mechanics and rock engineering 47 (4), 1411 – 1478.
Made with FlippingBook. PDF to flipbook with ease