PSI - Issue 13
T. Depover et al. / Procedia Structural Integrity 13 (2018) 1414–1420 Author name / Structural Integrity Procedia 00 (2018) 000–000
1419
6
4. Conclusions The H trapping ability of TiC and V 4 C 3 precipitates was evaluated in this work. Two conditions, as-Q and Q&T i.e with temper induced carbides, were compared. The tempered induced particles trapped a significant amount of H, as observed by TDS. Due to their efficient trapping, carbides slowed down H diffusion and effectively contributed to an enhanced resistance to H induced failure. Modified thermal treatments allow to steer the microstructure and its interaction with H as demonstrated by longer tempering times and subsequent analysis. Therefore, detailed investigation of the hydrogen/microstructure interaction allow to improve the material’s HE resistance. Acknowledgements The authors wish to thank the postdoctoral fellowship via grant nr BOF01P03516 and the Special Research Fund (BOF), UGent (BOF15/BAS/06). References Barnoush, A., Kheradmand, N., Hajilou, T., 2015. Correlation between the hydrogen chemical potential and pop-in load during in situ electrochemical nanoindentation, Scripta Mat 108, 76-79. Brandon, N.P., and Kurban, Z., 2017. Clean energy and the hydrogen economy, Phil Trans R Soc A, 375: 20160400. Brass, A., Chêne, J., 2006. Influence of tensile straining on the permeation of hydrogen in low alloy Cr-Mo steels, Corrosion Science, 481-497. Depover, T., Pérez Escobar, D., Wallaert, E., Zermout, Z., Verbeken, K., 2014. Effect of in-situ hydrogen charging on the mechanical properties of advanced high strength steels, Int Journal of Hydrogen Energy 39, 4647-4656. Depover, T., Wallaert, E., Verbeken, K., 2016. Fractographic analysis of the role of hydrogen diffusion on the hydrogen embrittlement susceptibilty of DP steel, Mat Sci and Eng A 649, 201-208. Depover, T., Verbeken, K., 2016. The effect of TiC on the hydrogen induced ductility loss and trapping behavior of Fe-C-Ti alloys, Corrosion Science 112, 308-326. Depover, T., Verbeken, K., 2016. Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe-C-V alloys, Materials Science and Engineering 675, 299-313. Depover, T. Verbeken, K., 2016. Hydrogen trapping and hydrogen induced mechanical degradation in lab cast Fe-C-Cr alloys, Mat Sci and Eng A 669, 134-149. Depover, T., Verbeken, K., 2016. Evaluation of the role of Mo2C in hydrogen induced ductility loss in Q&T Fe-C-Mo alloys, Int Journal of Hydrogen Energy 41, 14310-14329. Depover, T., Van den Eeckhout, E., Verbeken, K., 2018. Hydrogen induced mechacnial degradation in tungsten alloyed steels, Materials Characterization 136, 84-93. Depover, T., Verbeken, K., 2018. Thermal desorption spectroscopy study of the hydrogen trapping ability of W based precipitates in a Q&T matrix, Int Journal of Hydrogen Energy 43, 5760-5769. Depover, T., Verbeken, K., 2018. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: An experimental proof of the HELP mechanism, International Journal of Hydrogen Energy 43, 3050-3061. Devanathan, M., Stachurski, Z., 1962. The adsorption and diffusion of electrolytic hydrogen in palladium, Proc Roy Soc A 270, 90-101 Di Stefano, D., Nazarov, R., Hickel, T., Neugebauer, J., Mrovec, M., Elsässer, 2016. First principles investigation of hydrogen interaction with TiC precipitates in alpha-Fe, Physical Review 93, 184108-1-14. Drexler, A., Depover, T., Verbeken, K., Ecker, W., 2018. Model-based interpretation of TDS of Fe-C-Ti alloys, Acta Mat, submitted. Hajilou, T., Deng, Y., Rogne, B.R., Kheradmand, N., Barnoush, A., 2017. In situ electrochemical microcantilever bending test: A new insight into hydrogen enhanced cracking, Scripta Mat 132, 17-21. Hilditch, T.B., Lee, S.B., Speer, J.G., Matlock, D.K., 2003. Response to Hydrogen Charging in High Strength Automotive Sheet Steel Products, SAE Technical Paper, http://dx.doi.org/10.4271/2003-01-0525. Frappart, S., Feaugas, X., Creus, J., Thebault, F., Delattre, L., Marchebois, H., 2010. Study of the hydrogen diffusion and segregation into Fe-C Mo martensitic HSLA steel using electrochemical premeation test, Journal of Physics and Chemistry of Solids 71, 1467-1479. Kissinger, H.E., 1957. Reaction kinetics in differential thermal analysis, Analytical Chemistry 29, 1702-1706. Koyama, M., Akiyama, E., Lee, Y.K., Raabe, D., and Tsuzaki, K., 2017. Overview of hydrogen embrittlement in high-Mn steels, Int Journal of Hydrogen Energy 42, 12706-12723. Laureys, A., Depover, T., Petrov, R., Verbeken, K., 2015. Characterization of hydrogen induced cracking in TRIP-assisted steel, International Journal of Hydrogen Energy 40, 16977-16984. Laureys, A., Depover, T., Petrov, R., Verbeken, K., 2016. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD, Materials Characterization 112, 169-179. Liu, Q., Venezuela, J., Zhang, M., Zhou, Q., Atrens, A. 2017. Hydrogen trapping in some advanced high strength steels,” Corrosion Science 125, 114-138. Nagao, A., Martin, M.L., Dadfarnia, M., Sofronis, P., Robertson, M., 2014. The effect of nanosized (Ti,Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel, Acta Mat 74, 244-254. Olden, V., Thaulow, C., Johnsen, R., Ostby, E., Berstad, T., 2009. Influence of hydrogen from cathodic protection on the fracture susceptibility of 25%Cr duplex stainless steel - Constant load SENT testing and FE-modelling using hydorgen influenced cohersive zone elements, Engineering Fracture Mechanics 76, 827-844.
Made with FlippingBook. PDF to flipbook with ease