PSI - Issue 13
Thierry Palin-Luc et al. / Procedia Structural Integrity 13 (2018) 1545–1553 Palin-Luc and Jeddi / Structural Integrity Procedia 00 (2018) 000 – 000
1553
9
Jeddi D. and Palin-Luc T., 2018, A review about the effects of structural and operational factors on the gigacycle fatigue of steels, Fat. Fract. Engng. Mater. Struc. 41:969-990. Kovacs S, Beck T, Singheiser L, 2013. Influence of mean stresses on life and damage of a turbine blade steel in the VHCF ‐ regime. Int J Fatigue, 49:90 ‐ 99. Lei Z, Hong Y, Xie J, Sun C, Zhao A, 2012. Effects of inclusion size and location on very ‐ high ‐ cycle fatigue behavior for high strength steels. Mater Sci Eng A.558, 234 ‐ 241. Marti N, Favier V, Saintier N, Gregori F, 2015. Investigating fatigue frequency effects on single phase ductile materials. Procedia Eng.133, 294 ‐ 298 Ǥ Mayer H, Schuller R, Karr U, et al, 2015. Cyclic torsion very high cycle fatigue of VDSiCr spring steel at different load ratios. Int J Fatigue 70, 322 ‐ 327. Mayer H, Schuller R, Karr U, et al, 2016. Mean stress sensitivity and crack initiation mechanisms of spring steel for torsional and axial VHCF loading. Int J Fatigue.93, 309 ‐ 317 Ǥ Mintz B, Wilson DV, 1965. Strain ageing during the fatigue of carbon steels. Acta Metall.13, 947 ‐ 956. Perez ‐ Mora R, Palin ‐ Luc T, Bathias C, Paris PC, 2015. Very high cycle fatigue of a high strength steel under sea water corrosion: a strong corrosion and mechanical damage coupling. International Journal of Fatigue, Volume 74, 156 ‐ 165. Murakami Y, Takada M, Toriyama T, 1998. Fatigue. Super ‐ long life tension ‐ compression fatigue properties of quenched and tempered 0.46% carbon steel. International J Fatigue.19, 661 ‐ 667. Murakami Y, Nomoto T, Ueda T, 2000. On the mechanism of fatigue failure in the superlong life regime (N > 10 7 cycles). Part II: A fractographic investigation. Fatigue Fract Eng Mater Struct.23, 903 ‐ 910. Murakami Y, 2002. Metal Fatigue: Effects of Small Defects and Non Metallic Inclusions. 3 rd Ed. London: Elsevier. Murakami Y, Yamashita Y, 2014. Prediction of life and scatter of fatigue failure originated at nonmetallic inclusions. Procedia Eng.74, 6 ‐ 11. Nakajima M, Kamiya N, Itoga H, Tokaji K, Ko HN, 2006. Experimental estimation of crack initiation lives and fatigue limit in subsurface fracture of a high carbon chromium steel. Int J Fatigue.28, 1540 ‐ 1546. Nakajima M, Tokaji K, Itoga H, Shimizu T, 2010. Effect of loading condition on very high cycle fatigue behavior in a high strength steel. Int J Fatigue.32, 475 ‐ 480. Nie B, Zhang Z, Zhao Z, Zhong Q, 2013. Very high cycle fatigue behavior of shot ‐ peened 3Cr13 high strength spring steel. Mater Des.50, 503 ‐ 508. Palin ‐ Luc T, Perez ‐ Mora R, Bathias C, Dominguez G, Paris PC, Arana J ‐ L, 2010. Fatigue crack initiation and growth on a steel in the very high cycle regime with sea water corrosion. Engineering Fracture Mechanics 77, 1953 ‐ 1962 Ǥ Papadopoulos IV, Panoskaltsis VP, 1996. Invariant formulation of a gradient dependent multiaxial high ‐ cycle fatigue criterion. Eng Fract Mech.55, 513 ‐ 528. Roiko A, Murakami Y, 2012. A design approach for components in ultralong fatigue life with step loading. Int J Fatigue. 41, 140 ‐ 149. Sakai T, Sato Y, Oguma N, 2002. Characteristics S ‐ N properties of high ‐ carbon ‐ chromium ‐ bearing steel under axial loading in long ‐ life fatigue. Fatigue Fract Eng Mater Struct.25, 765 ‐ 773. Sakai T, 2009. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. J Solid Mech Mater Eng.3, 425 ‐ 439. Sakai T, Nakagawa A, Oguma N, et al, 2016. A review on fatigue fracture modes of structural metallic materials in very high cycle regime. Int J Fatigue.93, 339 ‐ 351. Shanyavskiy AA, 2013. Mechanisms and modeling of subsurface fatigue cracking in metals. Engineering Fracture Mechanics 110, 350 ‐ 363. Shimamura Y, Kokubo A, Ishii H, et al, 2014. Fatigue properties of carburized alloy steel in very high cycle regime under torsional loading. Int J Fatigue.60, 57 ‐ 62. Shiozawa K, Morii Y, Nishino S, Lu L, 2006. Subsurface crack initiation and propagation mechanism in high ‐ strength steel in a very high cycle fatigue regime. Int J Fatigue.28, 1521 ‐ 1532. Schneider N, Bödecker J, Berger C, Oechsner M, 2016. Frequency effect and influence of testing technique on the fatigue behavior of quenched and tempered steel and aluminium alloy. Int J Fatigue.93, 224 ‐ 231. Schönbauer BM, Stanzl ‐ Tschegg SE, Perlega A, et al, 2014. Fatigue life estimation of pitted 12% Cr steam turbine blade steel in different environments and at different stress ratios. Int J Fatigue 65, 33 ‐ 43. Stanzl ‐ Tschegg S., 2014. Very high cycle fatigue measuring techniques. Int J Fatigue.60, 2 ‐ 17. Stanzl ‐ Tschegg S., 2017. Fracture mechanical characterization of the initiation and growth of interior fatigue cracks. Fat. Fract. Eng. Mater. Struct. 40, 1741 ‐ 1751. Takeuchi E, Furuya Y, Nagashima N, Matsuoka S, 2008. The effect of frequency on the giga ‐ cycle fatigue properties of a Ti ‐ 6Al ‐ 4V alloy. Fatigue Fract Eng Mater Struct.31, 599 ‐ 605 Ǥ Suh C ‐ M, Kim J ‐ H, 2010. Fatigue characteristics of bearing steel in very high cycle fatigue. J Mech Sci Technol.23, 420 ‐ 425. Yang ZG, Li SX, Zhang JM, et al., 2004. The fatigue behaviors of zeroinclusion and commercial 42CrMo steels in the super ‐ long fatigue life regime. Acta Mater 52, 5235 ‐ 5241. Zettl B, Mayer H, Ede C, Stanzl ‐ Tschegg S, 2006. Very high cycle fatigue of normalized carbon steels. Int J Fatigue 28, 1583 ‐ 1589. Zhao P, Gao G, Misra RDK, Bai B, 2015. Effect of microstructure on the very high cycle fatigue behavior of a bainite/martensite multiphase steel. Mater Sci Eng A., 630:1 ‐ 7. Zhong ‐ Guang W, Rahka K, Nenonen P, Laird C, 1985. Changes in morphology and composition of carbides during cyclic deformation at room and elevated temperature and their effect on mechanical properties of CrMoV steel. Acta Metall. 33, 2129 ‐ 2141.
Made with FlippingBook. PDF to flipbook with ease