PSI - Issue 13

Avanish Kumar et al. / Procedia Structural Integrity 13 (2018) 548–553 Avanish et al./ Structural Integrity Procedia 00 (2018) 000 – 000

553

6

References

Antolovich, S.D. & Chanani, G.R., 1972. Subcritical crack growth of trip steels in air under static loads. Engineering Fracture Mechanics , 4(4), pp.765 – 776. ASTM, 2013. E399 - 12e3 Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K1C of Metallic Material. ASTM International , pp.1 – 33. ASTM Int., 2016. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. ASTM Book of Standards , i, pp.1 – 26. Avishan, B. et al., 2013. Retained austenite thermal stability in a nanostructured bainitic steel. Materials Characterization , 81, pp.105 – 110. Available at: http://dx.doi.org/10.1016/j.matchar.2013.04.015. Avishan, B., Yazdani, S. & Hossein Nedjad, S., 2012. Toughness variations in nanostructured bainitic steels. Materials Science and Engineering A , 548, pp.106 – 111. Available at: http://dx.doi.org/10.1016/j.msea.2012.03.098. Bhadeshia, H.K.D.H., 2001. Bainite in Steels 2nd ed., IOM Communications. Bhadeshia, H.K.D.H., 2010. Nanostructured bainite. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences , 466(2113), pp.3 – 18. Available at: http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.2009.0407. Bhadeshia, H.K.D.H., 2013. The first bulk nanostructured metal. Science and Technology of Advanced Materials , 14(1), pp.1 – 7. Available at: http://stacks.iop.org/1468-6996/14/i=1/a=014202?key=crossref.39dcf981685ab6715c2d3e80e4676e30. Bhadeshia, H.K.D.H. & Christian, J.W., 1990. Bainite in steels. Metallurgical Transactions A , 21(3), pp.767 – 797. Bhadeshia, H.K.D.H. & Edmonds, D. V., 1979. The bainite transformation in a silicon steel. Metallurgical Transactions A , 10(7), pp.895 – 907. Caballero, F.G. & Bhadeshia, H.K.D.H., 2004. Very strong bainite. Current Opinion in Solid State and Materials Science , 8(3 – 4), pp.251 – 257. Fielding, L.C.D. et al., 2016. Synchrotron analysis of toughness anomalies in nanostructured bainite. Acta Materialia , 105, pp.52 – 58. Available at: http://dx.doi.org/10.1016/j.actamat.2015.11.029. Garbarz, B. & Niżnik – Harańczyk, B., 2015. Modification of microstructure to increase impact toughness of nanostructured bainite – austenite steel. Materials Science and Technology , 31(7), pp.773 – 780. Available at: http://www.tandfonline.com/doi/full/10.1179/1743284714Y.0000000675. Garcia-Mateo, C. et al., 2016. Analyzing the scale of the bainitic ferrite plates by XRD, SEM and TEM. Materials Characterization , 122(October), pp.83 – 89. García-Mateo, C. & Caballero, F.G., 2005. The Role of Retained Austenite on Tensile Properties of Steels with Bainitic Microstructures. Materials Transactions , 46(8), pp.1839 – 1846. Mei, Z. & Morris, J.W., 1991. Analysis of transformation-induced crack closure. Engineering Fracture Mechanics , 39(3), pp.569 – 573. Morales-Rivas, L. et al., 2016. Ductility of Nanostructured Bainite. Metals , 6(12), p.302. Available at: http://www.mdpi.com/2075 4701/6/12/302. Peet, M.J. et al., 2017. Strength and toughness of clean nanostructured bainite. Materials Science and Technology (United Kingdom) , 836(January). Sourmail, T. et al., 2017. Tensile Ductility of Nanostructured Bainitic Steels: Influence of Retained Austenite Stability. Metals , 7(1), p.31. Available at: http://www.mdpi.com/2075-4701/7/1/31. Sudhakar, K. V. & Dwarakadasa, E.S., 2000. A study on fatigue crack growth in dual phase martensitic steel in air environment . Bulletin of Materials Science , 23(3), pp.193 – 199. Wu, R. et al., 2013. Effect of Retained Austenite on the Fracture Toughness of Quenching and Partitioning {(Q& P)}-Treated Sheet Steels. Metallurgical and Materials Transactions A , p.DOI: 10.1007/s11661-013-2113-0. Yakubtsov, I.A., Poruks, P. & Boyd, J.D., 2008. Microstructure and mechanical properties of bainitic low carbon high strength plate steels. Materials Science and Engineering A , 480(1 – 2), pp.109 – 116. Yang, J. et al., 2012. Microstructure and mechanical properties of high-carbon Si-Al-rich steel by low-temperature austempering. Materials and Design , 35, pp.170 – 174. Available at: http://dx.doi.org/10.1016/j.matdes.2011.08.041.

Made with FlippingBook. PDF to flipbook with ease