PSI - Issue 13
Jacopo Schieppati et al. / Procedia Structural Integrity 13 (2018) 642–647 Schieppati et al. / Structural Integrity Procedia 00 (2018) 000 – 000
647
6
temperatures. A detailed understanding of the temperature influence on the fatigue behavior finally allows the adaption of commonly used models to predict the lifetime of rubber components.
Acknowledgements
The research work of this paper was performed at the Polymer Competence Center Leoben GmbH (PCCL, Austria) within the framework of the COMET-program of the Federal Ministry for Digital, Business and Enterprise, the Federal Ministry of Education, Science and Research with contributions by the institute of Materials Science and Testing of Polymers at Montanuniversitaet Leoben, the Polymer Engineering Lab at Politecnico di Milano and Semperit Technische Produkte Gesellschaft m.b.H. The PCCL is funded by the Austrian Government and the State Governments of Styria, Lower Austria and Upper Austria. Busfield, J. J. C., Tsunoda, K., Davies, C. K. L., & Thomas, A. G. (2002). Contributions of time dependent and cyclic crack growth to the crack growth behavior of non strain-crystallizing elastomers. Rubber Chemistry and Technology , 75 (2), 643 – 656. https://doi.org/10.5254/1.3544991 Gent, A. N. (2012). Engineering with Rubber (3rd ed.). Carl Hanser Verlag GmbH Co KG. https://doi.org/10.5254/1.3538214 Lake, G. J., Lindley, P. B. (1964). Cut growth and fatigue of rubbers. II Experimetns on a noncrzstalliying rubber. Journal of Applied Polymer Science , 8 , 707 – 721. Legorju-Jago, K., & Bathias, C. (2002). Fatigue initiation and propagation in natural and synthetic rubbers. International Journal of Fatigue , 24 (2 – 4), 85 – 92. https://doi.org/10.1016/S0142-1123(01)00062-7 Lindley, P. B. (1974). Non-Relaxing Crack Growth and Fatigue in a Non-Crystallizing Rubber. Rubber Chemistry and Technology . https://doi.org/10.5254/1.3540497 Mars, W. V., & Fatemi, A. (2004). Factors that Affect the Fatigue Life of Rubber: A Literature Survey. Rubber Chemistry and Technology , 77 (3), 391 – 412. https://doi.org/10.5254/1.3547831 Mars, W., & Fatemi, a. (2002). A literature survey on fatigue analysis approaches for rubber. International Journal of Fatigue , 24 (9), 949 – 961. https://doi.org/10.1016/S0142-1123(02)00008-7 Medalia, A. I. (1991). Heat Generation in Elastomer Compounds: Causes and Effects. Rubber Chemistry and Technology . https://doi.org/10.5254/1.3538565 Persson, B. N. J., & Brener, E. A. (2005). Crack propagation in viscoelastic solids. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics , 71 (3), 1 – 8. https://doi.org/10.1103/PhysRevE.71.036123 Rivlin, R. S., & Thomas, A. G. (1953). Rupture of rubber. I. Characteristic energy for tearing. Journal of Polymer Science , 10 (3), 291 – 318. https://doi.org/10.1002/pol.1953.120100303 Stadlbauer, F., Koch, T., Archodoulaki, V. M., Planitzer, F., Fidi, W., & Holzner, A. (2013). Influence of experimental parameters on fatigue crack growth and heat build-up in rubber. Materials , 6 (12), 5502 – 5516. https://doi.org/10.3390/ma6125502 Young, D. G. (1986). Dynamic Property and Fatigue Crack Propagation Researchon Tire Sidewall and Model Compounds.pdf. Rubber Chemistry and Technology , 59 , 785 – 805. Young, D. G., & Danik, J. A. (1994). Effects of temperature on fatigue and fracture. Rubber Chemistry and Technology , 67 (1), 137 – 147. References
Made with FlippingBook. PDF to flipbook with ease