PSI - Issue 13
J.-P. Brüggemann et al. / Procedia Structural Integrity 13 (2018) 317–321 J.-P. Brüggemann et al. / Structural Integrity Procedia 00 (2018) 000 – 000
321
5
Fig. 4. Comparison of the threshold values Δ K I,th for the powders with median particle size of 31.7 µm and 38.9 µm by Riemer (2015) for the heat-treated condition (1073.15 K) and the condition after hot isostatic pressing.
4. Conclusions
The results of this study contribute to the determination of different influencing factors of the SLM-process on the material characteristics. One of them is the particle size distribution of the powder, which slightly changes from powder lot to powder lot. In this case, existing experimental data from Riemer (2015) and Leuders et al. (2013) were taken and compared to the mechanical and fracture mechanical properties of specimens with a significantly smaller mean particle size. In summary, it should be noted that the change of PSD from 38.9 μm to 31.7 μm has no significant influence on the mechanical and fracture-mechanical properties of Ti-6Al-4V alloy. In addition, the reproducibility of the material behavior is high and emphasizes the good processability by SLM. The validation of those material characteristics increases the reliability for the development of lightweight-optimized structures. ASTM, 2008. Annual book of ASTM standards. Section 3: Metals test methods and analytical procedures, vol 03.01. Metals - Mechanical testing, elevated and low-temperature tests. Metallography, 2008: E 647-08. Brüggemann, J.-P.; Riemer, A.; Reschetnik, W.; Aydinöz, M. E.; Kullmer, G.; Richard, H. A.; Schaper, M., 2016. Optimierung von Fahrradtretkurbeln mittels additiver Fertigung. In: DVM-Bericht 401, Arbeitskreis: Additiv gefertigte Bauteile und Strukturen, Deutscher Verband für Materialforschung und -prüfung e.V., Berlin, 101-112. DIN 50125. Testing of metallic materials – Tensile test pieces; E DIN 50125:2008-10. DIN EN ISO 6892-1. Metallic materials – tensile testing - part 1: method of test at room temperature; ISO 6892-1:2009. Gebhardt, A., 2013. Generative Fertigungsverfahren: Additive Manufacturing und 3D Drucken für Prototyping - Tooling - Produktion. 1st edn., Carl Hanser Fachbuchverlag, München. Gebhardt, A., 2016. 3D-Drucken: Grundlagen und Anwendungen des Additive Manufacturing (AM). 2nd edn., Hanser, München. Gibson, I., Rosen, D.W., Stucker, B., 2010. Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing. Springer, New York. Jackson, M.J., Ahmed, W., 2007. Surface engineered surgical tools and medical devices. Springer, New York. Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H. A., 2013. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue 48, 300-307. Peters, M., Leyens, C. (editor), 2010. Titan und Titanlegierungen. WILEY-VCH Verlag, Weinheim. Riemer, A., 2015. Einfluss von Werkstoff, Prozessführung und Wärmebehandlung auf das bruchmechanische Verhalten von Laserstrahlschmelz bauteilen. Shaker, Herzogenrath. Riemer, A., Leuders, S., Thöne, M., Richard, H. A., Tröster, T., Niendorf, T, 2014. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Engineering Fracture Mechanics 120, 15-25. Riemer, A.; Richard, H. A.; Brüggemann, J.-P.; Wesendahl, J.-N., 2015. Fatigue crack growth in additive manufactured products. Proceedings of the 5th International Conference on CRACK PATHS (CP2015), Ferrara, 494-503. Sander, M., Richard, H. A., 2004. Automatisierte Ermüdungsrissausbreitungsversuche. Materials Testing 46, 22-16. Schramm, B.; Brüggemann, J.-P.; Riemer, A.; Richard, H. A., 2016. Additive Fertigung in der Medizintechnik – Überblick und Beispiele – . DVM Bericht 401, Arbeitskreis: Additiv gefertigte Bauteile und Strukturen, Deutscher Verband für Materialforschung und -prüfung e.V., Berlin, 21-30. Thöne, M., Leuders, S., Riemer, A., Tröster, T., Richard, H. A., 2012. Influence of heat-treatment on selective laser melting products – e.g. Ti6Al4V. Solid freeform fabrication symposium SFF, Austin Texas. References
Made with FlippingBook. PDF to flipbook with ease