PSI - Issue 13

Tomasz Tomaszewski / Procedia Structural Integrity 13 (2018) 1756–1761 Author name / Structural Integrity Procedia 00 (2018) 000–000

1761

6

The qualitative analysis shows the correct application of the model, since the σ a -N characteristic determined analytically is shifted in a right direction. The calculated σ a -N characteristics for axial load is partly within the confidence interval for the standard specimen. However, it is on the hazardous side, i.e. the estimated fatigue strength for the reference specimen is higher than the experimental value. References Carpinteri, A., Spagnoli, A., Vantadori, S., 2009. Size effect in S-N curves: A fractal approach to finite-life fatigue strength. International Journal of Fatigue 31, 927-933. Eichlseder, W., 2002. Fatigue analysis by local stress concept based on finite element results. Computers and Structures 80, 2109-2113. Holka, H., Jarzyna, T., 2016. Rectilinearity of large sized shafts. Engineering Mechanics 2016, 202-205. Kloos, K. H., Buch, A., Zankov, D., 1981. Pure geometrical size effect in fatigue tests with constant stress amplitude and in programme tests. Materialwissenschaft und Werkstofftechnik 12, 40-50. Leitner, M., Vormwald, M., Remes, H., 2017. Statistical size effect on multiaxial fatigue strength of notched steel components. International Journal of Fatigue 104, 322-333. Ligaj, B., Soltysiak, R., 2016. Problems of equivalent load amplitude in fatigue life calculations. Polish Maritime Research 23(1), 85-92. Makkonen, M., 2003. Notch size effects in the fatigue limit of steel. International Journal of Fatigue. 25, 17-26. Piatkowski, T., 2010. Active fence with flexible link. Journal of Theoretical and Applied Mechanics 48(1), 87-109. Richard, H. A., Sander, M., Schramm, B., Kullmer, G., Wirxel, M., 2013. Fatigue crack growth in real structures. International Journal of Fatigue 50, 83-88. Rongqiao, W., Da, L., Dianyin, H., Fanchao, M., Hui, L., Qihang, M., 2017. A combined critical distance and highly-stressed-volume model to evaluate the statistical size effect of the stress concentrator on low cycle fatigue of TA19 plate. International Journal of Fatigue 95, 8-17. Sosnovskii, L. A., 1975. Experimental test of similarity equations for fatigue failure in components with stress-concentration regions. 1. Derivation and coefficient analysis for fatigue-failure equations for components with stress-concentration regions. Problemy Prochnosti 4, 40-45. Sosnovskii, L. A., 1975. Experimental test of similarity equations for fatigue failure in components with stress-concentration regions. 2. Test and error estimation for fatigue-failure equations for components with stress-concentration regions. Problemy Prochnosti 4, 46-50. Sosnovskii, L. A., 1989. Statistical model of a deformable solid with a critical volume and some of its applications 1. Problemy Prochnosti 5, 8-12. Sonsino, C. M., Fischer, G., 2005. Local assessment concepts for the structural durability of complex loaded components. Materialwissenschaft und Werkstofftechnik 36, 632-641. Steyn, J., 1995. Fatigue failure of deck support beams on a vibrating screen. International Journal of Piping and Pressure Vessels 61, 315-327. Strzelecki, P., Sempruch, J., 2016. Experimental method for plotting s-n curve with a small number of specimens. Polish Maritime Research 23(4), 129-137. Tomaszewski T., Sempruch, J., 2012. Determination of the fatigue properties of aluminum alloy using mini specimen. Materials Science Forum 726, 63-68. Tomaszewski, T., Sempruch, J., 2014. Verification of the fatigue test method applied with the use of mini specimen. Key Engineering Materials 598, 243-248. Tomaszewski T., Sempruch, J., 2017. Fatigue life prediction of aluminium profiles for mechanical engineering. Journal of Theoretical and Applied Mechanics 55(2), 497-507. Tomaszewski, T., Strzelecki, P., 2016. Study of the size effect for non-alloy steels S235JR, S355J2+C and acid-resistant steel 1.4301. AIP Conference Proceedings 1780, 020008. Weibull, W., 1949. A statistical representation of fatigue failures in solids. Transaction of the Royal Institute of Technology 27. Zastempowski, M., Bochat, A., 2015. Mathematical model ling of elastic deflection of a tubular cross-section. Polish Maritime Research 2(86), 22, 93-100.

Made with FlippingBook. PDF to flipbook with ease