PSI - Issue 12

ScienceDirect Available online at www.sciencedirect.com Av ilable o line at ww.sciencedire t.com ienceDirect Structural Integrity Procedia 00 (2016) 000 – 000 Procedia Structu al Integrity 12 (2018) 317–329 Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2018) 000 – 000 ScienceDirect Structural Integrity Procedia 00 (2018) 000 – 000

www.elsevier.com/locate/procedia

www.elsevier.com/locate/procedia

www.elsevier.com/locate/procedia

XV Portuguese Conference on Fracture, PCF 2016, 10-12 February 2016, Paço de Arcos, Portugal Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine P. Brandão a , V. Infante b , A.M. Deus c * a Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal b IDMEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal c CeFEMA, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal Abstract During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a model can be useful in the goal of predicting turbine blade life, given a set of FDR data. AIAS 2018 International Conference on Stress Analysis Green sandwich structures under impact: experimental vs numerical analysis Simonetta Boria a, *, Elena Raponi a , Fabrizio Sarasini b , Jacopo Tirillò b , Luca Lampani c a School of Science and Tech ology, University of Camerino, Cameri o 62032, Italy b Department of Chemical Engineering Materials Environment, Sapienza-Università di Roma, Roma 00185, Italy c Department of Mechanical and Aerospace Engineering, Sapienza-Università di Roma, Roma 00185, Italy Nowadays, there is a growing interest for the use and development of materials synthesized from renewable sources in the polymer composites manufacturing industry; this applies for both matrix and reinforcement components. In the present research, flax fibers embedded in an epoxy resin have been proposed as an environmentally friendly alternative to traditional synthetic composites. In addition, this material system has been combined with agglomerated cork as core material for the fabrication of sandwich structures. The objective of this article is to analyze the suitability of using such green sandwich structures in applications where energy absorption due to low velocity impacts can be of importance. Therefore green sandwich specimens with flax/epoxy face sheets and agglomerated cork as core have been manufactured and subjected to low velocity impacts at different energies. After the mechanical characterization of both skin and core material, a numeric l mod l ha been implemented through t e non-linear dynamic code LS-DYNA. The FE analysis h s been able to reproduce with a good level of accuracy the deformation mech isms the load-displa e ent diagr ms for ach energy level. © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/) Peer-review under responsibility of the Scientific Committee of AIAS 2018 International Conference on Stress Analysis. © 2018 The Auth rs. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/) Peer-review under responsibility of the Scientific Committee of AIAS 2018 International Conference on Stress Analysis. AIAS 2018 International Conference on Stress Analysis Green sandwich structures under impact: experimental vs numerical analysis Simonetta Boria a, *, Elena Raponi a , Fabrizio Sarasini b , Jacopo Tirillò b , Luca Lampani c a School of Science and Technology, University of Camerino, Camerino 62032, Italy b Department of Chemical Engineering Materials Environment, Sapienza-Università di Roma, Roma 00185, Italy c Department of Mechanical and Aerospace Engineering, Sapienza-U iversità di Roma, Rom 00185, Italy Abstract Nowadays, there is a growing interest for the use and development of materials synthesized from renewable sources in the polymer composites manufacturing industry; this applies for both matrix and reinforcement components. In the present research, flax fibers embedded in an epoxy resin have been proposed as an environmentally friendly alternative to traditional synthetic composites. In addition, this material system has been combined with agglomerated cork as core material for the fabrication of sandwich structures. The objective of this article is to analyze the suitability of using such green sandwich structures in applications where energy absorption due to low velocity impacts can be of importance. Therefore green sandwich specimens with flax/epoxy face sheets and agglomerated cork as core have been manufactured and subjected to low velocity impacts at different en rgies. After the me hanical characterization of both skin and core material, a numerical model has been implemented through the non-l near dy a ic c e LS-DYNA. The FE a alysis has been able to reproduc with a go d level of accuracy the deformation mechanisms and the load-displacement diagrams for each energy level. © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/) Peer-review under responsibility of the Scientific Committee of AIAS 2018 International Conference on Stress Analysis. K ywords: gree composites; natural fibers; cork agglomerated; sandwich structure; impact behaviour © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. Keywords: green composites; natural fibers; cork agglomerated; sandwich structure; impact behaviour Abstract

Keywords: High Pressure Turbine Blade; Creep; Finite Element Method; 3D Model; Simulation.

* Corresponding author. Tel.: +39-0737402503. E-mail address: simonetta.boria@unicam.it * Corresponding author. Tel.: +39-0737402503. E-mail address: simonetta.boria@unicam.it

2452-3216 © 2016 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the Scientific Committee of PCF 2016. 2452-3216  2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/) Peer-review under responsibility of the Scientific Committee of AIAS 2018 International Conference on Stress Analysis. 10.1016/j.prostr.2018.11.084 2452-3216 © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/) Peer-revi w u er responsibility of the Scientific Committee of AIAS 2018 International Conference on Stress Analysis. 2452-3216 © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/) Peer-review under responsibility of the Scientific Committee of AIAS 2018 International Conference on Stress Analysis. * Corresponding author. Tel.: +351 218419991. E-mail address: amd@tecnico.ulisboa.pt

Made with FlippingBook - Online Brochure Maker