PSI - Issue 1
FV Antunes et al. / Procedia Structural Integrity 1 (2016) 090–097 Author name / Structural Integrity Procedia 00 (2016) 000 – 000
97
8
Acknowledgements
This research is sponsored by FEDER funds through the program COMPETE (under project T449508144 00019113) and by national funds through FCT – Fundação para a Ciência e a Tecnologia – , under the project PTDC/EMS-PRO/1356/2014. References Alves, J.L., Menezes, L.F., 2001. Application of tri-linear and tri-quadratic 3-D solid FE in sheet metal forming process simulation. In: K. Mori, editors. NUMIFORM 2001, Japan, 639 – 644. Antunes, F.V., Rodrigues, D.M., 2008. Numerical simulation of plasticity induced crack closure: Identification and discussion of parameters. Engng Fracture Mechanics 75, 3101 – 3120. Antunes, F.V., Chegini, A.G., Correia, L., Branco, R., 2014. Numerical study of contact forces for crack closure analysis. International Journal of Solids and Structures 51, 1330 – 1339. Alizadeh, H., Hills, D.A., de-Matos P.F.P., Nowell, D., Pavier, M.J., Paynter, R.J., Smith, D.J., Simandjuntak, S., 2007. A comparison of two and three-dimensional analyses of fatigue crack closure. Int. J. Fatigue 29, 222 – 231. Bodner, S.R., Davidson, D.L., Lankford, J., 1983. A description of fatigue crack growth in terms of plastic work. Engineering Fracture Mechanics 17(2), 189 – 191. Chaparro, B.M., Thuillier, S., Menezes, L.F., Manach, P.Y., Fernandes, J.V., 2008. Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms. Computational Materials Science 44(2), 339-346. Christensen, R.H., 1963. Fatigue crack growth affected by metal fragments wedged between opening-closing crack surfaces. Appl. Mater. Res. 2(4), 207-210. Elber, W., 1970. Fatigue crack closure under cyclic tension, Eng. Fracture Mechanics 2, 37-45. Ellyin, F., Wu, J., 1999. A numerical investigation of the effect of an overload on fatigue crack opening and closure behavior. Fatigue and Fracture of Engineering Materials and Structures 22, 835-847. Heung, B.P., Kyung, M.K., Byong, W.L., 1996. Plastic zone size in fatigue cracking, Int. J. Pres. Ves. Piping 68, 279 – 285. Klingbeil, N.W., 2003. A total dissipated energy theory of fatigue crack growth in ductile solids. Int Journal of Fatigue 25, 117 – 128. Kujawski, D., 2001. A new ( K+Kmax)0.5 driving force parameter for crack growth in aluminum alloys. Int J Fatigue 23, 733 – 740. Lee, S.Y., Liaw, P.K., Choo, H., Rogge, R.B., 2011. A study on fatigue crack growth behavior subjected to a single tensile overload Part I. An overload-induced transient crack growth micromechanism. Acta Materialia 59, 485 – 494. Matos, P.F.P., Nowell, D., 2007. On the accurate assessment of crack opening and closing stresses in plasticity-induced fatigue crack closure problems. Engineering Fracture Mechanics 74, 1579 – 1601. Menezes, L.F., Teodosiu, C. 2000. Three-Dimensional Numerical Simulation of the Deep-Drawing Process using Solid Finite Elements. Journal of Materials Processing Technology 97, 100-106. Nicholls, D.J., 1994. The relation between crack blunting and fatigue crack growth rates. Fatigue Fract Eng Mater Struct 17(4), 459-467. Noroozi, A.H., Glinka, G., Lambert, S., 2005. A two parameter driving force for fatigue crack growth analysis. Int J Fatigue 27, 1277 – 1296. Oliveira, M.C., Menezes, L.F. 2004. Automatic correction of the time step in implicit simulations of the stamping process. Finite Elements in Analysis and Design 40, 1995 – 2010. Paris, P.C., Erdogan J. 1963. Critical analysis of crack growth propagation laws. J Basic Eng 85D, 528 – 34. Pelloux, R.M., 1970. Crack Extension by alternating shear. Eng Fracture Mechanics 1, 170-174. Philips, E.P., 1989. Results of the round robin on opening-load measurement, NASA Tech. Meno. 101601, 1989 (Langley Research Center, Hampton, VA). Pippan, R., Grosinger, W., 2013. Fatigue crack closure: From LCF to small scale yielding. Int Journal of Fatigue 46, 41 – 48. Pokluda, J., 2013. Dislocation-based model of plasticity and roughness-induced crack closure. Int Journal of Fatigue 46, 35-40. Rice, J.R., 1967. Mechanics of crack tip deformation and extension by fatigue. In: Fatigue crack propagation. Philadelphia: ASTM STP 415; 1967. p. 256 – 71. Tong, J., 2002. T-stress and its implications for crack growth, Engng Fracture Mechanics 69, 1325 – 1337. Toribio, J., Kharin, V., 2013. Simulations of fatigue crack growth by blunting – re-sharpening: Plasticity induced crack closure vs. alternative controlling variables. International Journal of Fatigue 50, 72 – 82. Tvergaard, V., 2004. On fatigue crack growth in ductile materials by crack – tip blunting. Journal of the Mechanics and Physics of Solids 52, 2149 – 2166. Vasudevan, A.K., Sadananda K., Louat, N. 1993. Two critical stress intensities for threshold crack propagation. Scripta Metal 28, 65 – 70. Zhang, J., He, X.D., Du, S.Y., 2005. Analyses of the fatigue crack propagation process and stress ratio effects using the two parameter method. Int Journal of Fatigue 27, 1314 – 1318.
Made with FlippingBook - Share PDF online