Mathematical Physics - Volume II - Numerical Methods
Chapter 3. Comparison of finite element method and finite difference method
78
y
ξ
(0,1)
(3,1)
3
2
η
Ω
1
4
1
x
(0,0)
(3,0)
y
ξ
(0,1)
(3,1)
2
3
η
η
Ω
2
1
4
x
(0,0)
(3,0)
4
3
3
η
(2,2)
ξ
y
ξ
Ω ^
(0,1)
4
2
1
3 Ω
2
1
x
(0,0)
(1,0)
y
(0,2)
4
η
(1,1)
3
4 Ω
ξ
1
2
x
(3,0)
(0,0)
Figure 3.18: Finite element transformation.
By transforming into element Ω 3 , fig. 3.18.
( x i , y i ) = { ( 0 , 0 ) , ( 1 , 0 ) , ( 2 , 2 ) , ( 0 , 1 ) } ⇒ x = ψ 2 + 2 ψ 3 = 1 4 ( 3 + 3 ξ + η + ξη )
1 4 ( 3 + ξ + 3 η + ξη )
y = 2 ψ 3 + ψ 4 =
1 8
1 8
1 2
| J | = η . Considering that | J | > 0 for ξ , η ∈ ( − 1 , 1 ) , this transformation is invertible. Value of | J | is lowest at node 1 and highest at node 3, indicating relative elongation of different parts of ˆ Ω via transformation T 3 . By transforming element Ω 4 , fig. 3.18, we obtain: ( x i , y i ) = { ( 0 , 0 ) , ( 3 , 0 ) , ( 1 , 1 ) , ( 0 , 2 ) } ⇒ + ξ +
x = 3 ψ 2 + ψ 3 y = ψ 3 + 2 ψ 4 ( 5 − 3 ξ − 4 η )
(3.133)
1 8
| J | =
Made with FlippingBook flipbook maker