Mathematical Physics - Volume II - Numerical Methods
3.4 Finite element interpolation
65
where ( ξ i , η i ) are node coordinates. By solving this system of linear algebraic equation in terms of a 1 , a 2 and a 3 , we obtain: a 1 = v 1 ,
a 2 = v 2 − v 1 , a 3 = v 3 − v 1 ,
(3.74)
By replacing (3.74) into (3.72), the following is obtained: v e h ( ξ , η ) = v 1 ψ e 1 ( ξ , η )+ v 2 ψ e
2 ( ξ , η )+ v 3 ψ e
3 ( ξ , η ) ,
(3.75)
where ψ e
i ( ξ , η ) are element shape functions: ψ e
1 ( ξ , η ) = 1 − ξ − η , ψ e 2 ( ξ , η ) = ξ , ψ e 3 ( ξ , η ) = η .
(3.76)
v , ( ) ξ η e h
v
v 1
v 2
1
e
2
v 3
3
ψ 3 ,
( ) ξ η e
1
1
2
e
3
1
ψ 2 ,
( ) ξ η e
1
e
2
3
ψ 1 e
, ( ) ξ η
1
y
1
e
2
x
ξ
3
η
Figure 3.11: Interpolation functions of a triangular finite element.
Made with FlippingBook flipbook maker