Mathematical Physics - Volume II - Numerical Methods
1.1 Finite difference method
25
y
y
N
y
N -1
n
n
y
(x , ) y M+1 2
-1 ( , ) x y 2
2
y
1
x 2
x 1
x 3
x M
x M -1
x
( , ) x y 2 -1
Figure 1.1: Finite difference mesh.
If we now assume that n = N = 2 and g = 0, we can solve the system of linear algebraic equations AU = B , which includes equations (1.63)-(1.70) and is given below:
4 − 2 0 − 2 0 0 0 0 0 − 1 4 − 1 0 − 2 0 0 0 0 0 − 2 4 0 0 − 2 0 0 0 − 1 0 0 4 − 2 0 − 1 0 0 0 − 1 0 − 1 4 − 1 0 − 1 0 0 0 − 1 0 − 2 4 0 0 − 1 0 0 0 − 2 0 0 4 − 2 0 0 0 0 0 − 2 0 − 1 4 − 1 0 0 0 0 0 − 2 0 − 2 4
U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U 9
f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9
= − h 2
(1.71)
Since the sum of matrix terms in each row is 0, the unit vector column C = [ 1 , 1 , . . . , 1 ] T satisfies the condition that AC = 0 . Thus, the equation AU = 0 has a solution different from zero, which implies that A is singular. Hence, Neumann problem might not have a solution, but could also have an infinite amount of them, in the form of U = U ∗ + α C . By dividing the I, III, VII and IX rows of matrices A and B by 2, and multiplying row V by 2, we obtain a new system of linear algebraic equations, A ′ U = B ′ : as follows:
2 − 1 0 − 1 0 0 0 0 0 − 1 4 − 1 0 − 2 0 0 0 0 0 − 1 2 0 0 − 1 0 0 0 − 1 0 0 4 − 2 0 − 1 0 0 0 − 2 0 − 2 8 − 2 0 − 2 0 0 0 − 1 0 − 2 4 0 0 − 1 0 0 0 − 1 0 0 2 − 1 0 0 0 0 0 − 2 0 − 1 4 − 1 0 0 0 0 0 − 1 0 − 1 2
U 1 U 2 U 3 U 4 U 5 U 6 U 7 U 8 U 9
.
f 1 / 2 f 2 f 3 f 4 2 f 5 f 6 f 7 f 8 f 9 / 2
= − h 2
(1.72)
T and A ′ C
Since for this system of linear algebraic equations we have that A ′ = A ′
= 0, if the
Made with FlippingBook flipbook maker