Mathematical Physics - Volume II - Numerical Methods

205

BIBLIOGRAPHY

[21] De Vuyst T., Vignjevic R. and Campbell J. (2005), Modelling of Fluid-Structure Impact Problems using a Coupled SPH-FE solver, Journal of Impact Engineering, Volume 31, Issue 8, pp. 1054-1064 [22] Dilts G. A., (1997), Moving –least squares-particle hydrodynamics I, consistency and stability. International Journal for Numerical Methods in Engineering, 44, pp. 1115-55 [23] Dillon, O.W. and Kratochvill, J., 1970.“A Strain Gradient Theory of Plasticity,” International Journal of Solids and Structures, 6, 1533-1566 [24] Dyka C. T., Ingel R.P., (1995), An approach for tension instability in smoothed particle hydrodynamics (SPH). Computers and Structures, 57(4), pp. 573-580 [25] Enakoutsa, K., Leblond, J.B. and Perrin, G., 2007. “Numerical Implementation and Assessment of a Phenomenological Nonlocal Model of Ductile Rupture,” Computer Methods in Applied Mechanics and Engineering, 196, 1946-1957 [26] Enakoutsa, K., Solanki, K., Bammann, D. and Ahad, F., 2012. “Using Damage Delocalization to Model Localization Phenomena in Bammann-Chiesa-Johnson Metals,” Journal of Engineering Materials and Technology, 134(4) [27] Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W., 1994.“Strain Gra dient Plasticity: Theory and Experiment,” Acts Metallurgic and Materialia, 42(2), 475-487 [28] Gingold, R.A. and Monaghan, J.J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices Royal Astronomical Society, Vol. 181, pp. 375-389. [29] Guenther C., Hicks D.L. qnd Swegle J.W. (1994). Conservative smoothing versus artificial viscosity. Technical Report SAND94-1853. [30] Harten A., P. D. Lax P. D.. and van Leer B., (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Review, V 25, no 1, pp 35 -61. [31] Hiermaier S., Peter J., Sauer M., Thoma K. (2001): Coupled FE-Particle Codes Applied to Material Characterization and Crash Simulation. European Conference on Computational Mechanics (ECCM), Krakau, Polen, 26.-29.06.. [32] Hiermaier S. and Sauer M., (2003), Adaptive FE-Meshfree Modelling for impacts of liquid filled vessels on thin walled structures, Proceedings of IMECE’03, ASME International Mechanical Engineering Congress and Exposition, Washington DC, paper IMECE2003-44189 [33] Huerta A, Fernandez-Mendez S., (2000), Enrichment and coupling of the finite element and meshless method, International Journal for Numerical Methods in Engineering; 48: pp. 1615-1636.

Made with FlippingBook flipbook maker