Mathematical Physics - Volume II - Numerical Methods
Chapter 4. Finite volume method
134
Quasi-linear form of the equation (4.63) can be written as follows:
∂ U ∂ t
∂ U ∂ x
∂ U ∂ y
∂ U ∂ z
+ A
+ B
+ C
= 0 ,
(4.66)
where A , B and C are three Jacobi flux matrices, determined by derivatives
∂ f ∂ U ,
∂ g ∂ U
∂ h ∂ U .
A =
B =
i C =
(4.67)
The Jacobi matrix A can be explicitly expressed in the form
,
0
1
0
0
0
γ − 1 2
q 2
− u 2 +
( 3 − γ ) u
− ( γ − 1 ) v − ( γ − 1 ) w
( γ − 1 )
A =
− uv − uw
v
u 0
0 u
0 0
(4.68)
w
γ − 1 2
( q 2 + 2 u 2 ) − ( γ − 1 ) uv − ( γ − 1 ) uw
2 ] γ e
− u [ γ e t − ( γ − 1 ) q
γ u
t −
while the matrix B is
,
0
0 v
1 u
0 0
0 0
− uv
γ − 1 2
q 2
− v 2 +
− ( γ − 1 ) u
( 3 − γ ) v
− ( γ − 1 ) w ( γ − 1 )
B =
(4.69)
− vw
0
w
v
0
γ − 1 2
( q 2 + 2 v 2 ) − ( γ − 1 ) vw
2 ] − ( γ − 1 ) uv γ e
− v [ γ e t − ( γ − 1 ) q
γ v
t −
where the matrix C is
.
0
0
0 0
1 u v
0 0 0
− uw − vw
w
0
w
C =
(4.70)
γ − 1 2
q 2
− w 2 +
− ( γ − 1 ) u
− ( γ − 1 ) v
( 3 − γ ) w
( γ − 1 )
γ − 1 2
( q 2 + 2 w 2 )
2 ] − ( γ − 1 ) uw − ( γ − 1 ) vw γ e t −
− w [ γ e t − ( γ − 1 ) q
γ w
In the expressions (4.68)-(4.70) the variable q represents the intensity of the fluid velocity. By introducing the vector of basic variables V = ( ρ , u , v , w , p ) T a system of Euler equations receives the form
∂ V ∂ t
∂ V ∂ x
∂ V ∂ y
∂ V ∂ z
+ e A
+ e C
+ e B
= 0 ,
(4.71)
where e A , e B and e C are the corresponding Jacobi matrices. Matrices ( e A , e B , e C ) can be
Made with FlippingBook flipbook maker