Mathematical Physics - Volume II - Numerical Methods
4.2 Solution of Euler equations
129
while for the boundary m − 1 the flux is determined from the equation (4.36) F n + 1 m − 1 = F n + 1 m − 1 / 2 − A + m − 1 ( q n + 1 m − 1 / 2 − q n + 1 m − 3 / 2 ) .
(4.49)
Based on the equations (4.48) and (4.49) it follows F n + 1 m − F n + 1 m − 1 = F n m − F n m − 1 + A − m ∆ q n
m + 1 / 2 − A − m ∆ q n
m − 1 / 2 +
(4.50)
∆ q n
∆ q n
+ A +
A +
m − 1 / 2 −
m − 3 / 2 .
m − 1
m − 1
With the known flux vector F , Jacobi matrix A = ∂ F / ∂ q becomes
∂ F ∂ q =
, (4.51)
0
1
0
( γ − 3
2
− ( γ − 3 ) u 3 ( γ − 1 ) 2 t −
( γ − 1 )
2 ) u
A =
3 γ e
2
− γ ue t +( γ − 1 ) u
γ u
u
while Jacobi matrix ∂ H / ∂ q is defined by relation
dS dx
0 0 0 1 2 u 2 − u 1 0 0 0 .
∂ H ∂ q = (
γ − 1 )
B =
(4.52)
Averaged variables 3 in the expressions (4.38) are introduced so that the equation F D − F L = A¯¯ ( q D , q L ) ( q D − q L ) is satisfied if the elements of the matrix A¯¯ are obtained by substitution of the independent flow variables in the corresponding elements of matrix A with such averaged quantities. Matrix A in the expression (4.51) can be diagonalized into form A = T Λ T − 1 , (4.54) where Λ is a diagonal matrix whose diagonal elements are eigenvalues of the matrix A . T is a matrix whose rows are right eigenvectors of the matrix A , ie. T = 1 α α u α ( u + c ) α ( u − c ) 1 2 u 2 α ( 1 2 u 2 + uc + c 2 γ − 1 ) α ( 1 2 u 2 − uc + c 2 γ − 1 ) , (4.55) while T − 1 is the matrix whose rows are left eigenvectors of the matrix A T − 1 = 1 − 1 2 u 2 γ − 1 c 2 ( γ − 1 ) u c 2 − ( γ − 1 ) c 2 β [( γ − 1 ) u 2 2 − uc ] β [ c − ( γ − 1 ) u ] β ( γ − 1 ) β [( γ − 1 ) u 2 2 + uc ] − β [ c +( γ − 1 ) u ] β ( γ − 1 ) . (4.56) 3 For a detailed determination of averaged variables procedure it is necessary to consult the literature [ hirsch ] (Hirsch, C. Numerical Computation of Internal and External Flows , Vol. 2, pp. 463–467). (4.53)
Made with FlippingBook flipbook maker