Mathematical Physics Vol 1
7.8 Examples
431
it follows
f ′ r h
r 2 i
∂ 2 f ∂ x i ∂ x j
∂ f ∂ x i
∂ r ∂ x i
x i x j r 2
x i x j
x i r
= f ′ ( r )
= f ′ ( r )
= f ′′
δ i j −
,
+
,
d 2 f d r 2 ⇒
d f d r
f ′ ( r )=
f ′′ ( r )=
;
d f ′ f ′
n − 1 r
n + 1 r
= −
f ′ ( r )= 0 ⇒
∆ f = f ′′ ( r )+
d r ⇒
f ′ ( r )= Cr 1 − n , C = const. ⇒ d f = C r n − 1 d r .
Analysis
We shall distinguish two cases 1) for n = 2
d r
d f = C
f = C ln r + D ,
r ⇒
i
2) for n > 2
C 2 − n
r 2 − n + D .
f =
R Note that in this appendix the convention on summation by repeated indices was used.
Made with FlippingBook Digital Publishing Software