Mathematical Physics Vol 1
7.8 Examples
419
which in the given special case for Q Q ( x )= ( x ,
if 0 < x < 1 , 2 − x , if 1 < x < 2 .
(7.364)
yields for q n
q n = Z
n π x 2
2
Q ( x ) sin
d x =
0
= Z =
d x + Z
n π x 2
n π x 2
1
2
x sin
( 2 − x ) sin
d x =
0
1
2 2
1
n π x
n π x
4 n 2 π 2
2 xn π cos
sin
(7.365)
2 −
+
0
+ −
2
n π x 2
n π x
4 n 2 π 2
2 x n π
sin
cos
+
=
1
n π x 2
8 n 2 π 2
sin
=
.
Substituting the respective expressions into (7.359), we obtain ∞ ∑ n = 1 T ′ n ( t ) sin n π x 2 = − ∞ ∑ n = 1 n π x 2 2 T n ( t ) sin n π x 2 + ∞ ∑ n = 1 q n sin n π x 2 , By simplifying and grouping the respective members next to sin npx 2 , we obtain T ′ n ( t )+ n 2 π 2 4 T n ( t )= q n , (7.366) which is a linear differential equation for T n . Its solution is
4 n 2 π 2
π 2 )
( n
2 t
q n + b n e −
T n ( t )=
The final solution is
∞ ∑ n = 1
2 t sin
n π x 2
4 n 2 π 2
π 2 )
( n
q n + b n e −
u ( x , t )=
(7.367)
.
The initial condition yields
∞ ∑ n = 1
q n + b n sin
n π x 2
4 n 2 π 2
2 x − x 2 =
.
If we introduce the substitution
4 n 2 π 2
c n =
q n + b n ,
(7.368)
we obtain
∞ ∑ n = 1
n π x 2
2 x − x 2 =
c n sin
.
This expression represents the Fourier sine series, and thus c n c n = Z 2 0 ( 2 x − x 2 ) sin n π x 2 d x = = 16 n 3 π 3 1 − cos n π 2 ,
(7.369)
Made with FlippingBook Digital Publishing Software