Mathematical Physics Vol 1
Chapter 7. Partial differential equations
408
and thus
t !
u n ( x , t )= X n ( x ) T n ( t )= sin n − 1 2
x exp − α 2 n − 1 2 2
and the solution is
t ! .
b n sin n −
1 2
x exp − α 2 n − 1 2 2
∞ ∑ n = 1
u ( x , t )=
The constants b n are determined from the initial condition u ( x , 0 )= 3sin 5 x 2 , i.e. u ( x , 0 )= ∞ ∑ n = 1 b n sin n − 1 2 x = 3sin 5 x 2 . It is necessary to expand the function ϕ ( x ) into a Fourier series, and thus
6 π · (
3sin
2
sin n −
1 2
x d x =
2 π Z
π / 2 , for n = 3 , 0 , otherwise .
π
5 x
b n =
0
Thus, only b 3̸ = 0, while other constants are equal to zero. Finally, the solution is u ( x , t )= 3sin 5 x 2 exp " − 5 α 2 2 t # . Check:
t ! ,
α 2 sin
2
exp −
2
2
5 α
75 4 75 4
5 x
u t ( x , t )= −
t ! ,
sin
2
exp −
2
2
5 α
5 x
u xx ( x , t )= −
and thus
2 u
u t = α
xx ,
i.e. the solution is correct.
Problem 268 Solve the PDE
u t = u xx , 0 ≤ x ≤ 2 π , t > 0 .
Made with FlippingBook Digital Publishing Software