Mathematical Physics Vol 1
Chapter 7. Partial differential equations
406
Thus, it is necessary to expand the function ϕ ( x ) into a Fourier series, and then, comparing with (7.320), obtain the constants b n , i.e. b n = Z 2 0 ϕ ( x ) sin n π x 2 d x = = Z 2 0 2sin π x 2 − sin ( π x )+ 4sin ( 2 π x ) sin n π x 2 d x = = 2 Z 2 0 sin π x 2 sin n π x 2 d x − Z 2 0 sin ( π x ) sin n π x 2 d x + + 4 Z 2 0 sin ( 2 π x ) sin n π x 2 d x . From the condition of orthogonality (see Example 186, on p. 270) it follows Z 2 0 sin π x 2 sin n π x 2 d x = ( 1 , for n = 1 , 0 , otherwise .
d x = ( d x = (
Z 2 0
sin ( π x ) sin sin ( 2 π x ) sin
2 2
n π x
1 , for n = 2 , 0 , otherwise . 1 , for n = 4 , 0 , otherwise .
Z 2 0
n π x
Finally, for constants b n we obtain: b 1 = 2 Z 2 0 sin π x 2 2
sin
2 2
n π x
d x − 0 + 0 = 2 , d x + 0 = − 1 ,
b 2 = 0 − Z b 4 = 0 − 0 + 4 Z 0
sin ( π x ) sin 2
n π x
sin ( 2 π x ) sin
2
n π x
d x = 4 ,
0
b n = 0 if n̸ = 1 , 2 , 4 ,
and the solution is u ( x , t )= 2sin π x 2
exp −
t − sin ( π x ) exp −
t − sin ( 2 π x ) exp − π 2 t .
π 2 16
π 2 4
Problem 267 Find the solution of the following PDE
2 u
u t = α
xx , 0 ≤ x ≤ π , t > 0 ,
Made with FlippingBook Digital Publishing Software